Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Base de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Front Pharmacol ; 14: 1237845, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37719855

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) is a progressive metabolic disease characterized by hepatic steatosis, inflammation, and fibrosis that seriously endangers global public health. Epidemiological studies have shown that the incidence of non-alcoholic fatty liver disease in postmenopausal women has significantly increased. Studies have shown that estrogen deficiency is the main reason for this situation, and supplementing estrogen has become a new direction for preventing the occurrence of postmenopausal fatty liver. However, although classical estrogen replacement therapy can reduce the incidence of postmenopausal NAFLD, it has the risk of increasing stroke and cardiovascular diseases, so it is not suitable for the treatment of postmenopausal NAFLD. More and more recent studies have provided evidence that phytoestrogens are a promising method for the treatment of postmenopausal NAFLD. However, the mechanism of phytoestrogens in preventing and treating postmenopausal NAFLD is still unclear. This paper summarizes the clinical and basic research evidence of phytoestrogens and reviews the potential therapeutic effects of phytoestrogens in postmenopausal NAFLD from six angles: enhancing lipid metabolism in liver and adipose tissue, enhancing glucose metabolism, reducing oxidative stress, reducing the inflammatory response, regulating intestinal flora, and blocking liver fibrosis (Graphical Abstract).

2.
J Hazard Mater ; 416: 126262, 2021 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-34492997

RESUMEN

Cadmium (Cd) and tetracycline (TC) cause serious environmental risks. Nanomaterials have been extensively applied for environmental remediation. The size and content of nanoparticles directly affect the removal of contaminants. However, size regulation and quantitative determination of nanoparticles cannot be easily realized. In this study, hydrogels with different polymerization degrees were prepared by adjusting the contents of acrylamide (AM) and sodium lignosulfonate polymeric monomers. Ferrous sulfide (FeS) nanoparticles of different sizes were synthesized in situ within the hydrogels. The nanoparticle size decreased from 600 to 200 nm with increasing hydrogel polymerization degree, and an incomplete crystalline state was observed at the highest polymerization degree. By combining energy dispersive spectroscopy (EDS) images with the maximum between-class variance (Otsu) method, the content of nanoparticles was calculated to be 7.81%, 15.05%, 22.62%, 27.10%, 21.97%, and 23.95%. The distribution state of FeS compounds was also obtained. A low polymerization degree resulted in high FeS dispersal, and a high polymerization degree affected the uniformity distribution based on irregular ion diffusion. The obtained nanocomposites with different polymerization degrees were applied to the removal of Cd and TC in water. The removal capacity for both contaminants revealed a trend of initially increasing and then decreasing. The initial increase was related to the increasing content and decreasing size of the FeS nanoparticles, while the following decrease was due to the decreasing content and incomplete crystallization of the FeS nanoparticles. Overall, changing the proportion of polymeric monomers is an effective way to regulate particle size, and the Otsu method combined with EDS mapping images is a feasible method for calculating the content of nanoparticles.


Asunto(s)
Cadmio , Nanopartículas , Compuestos Ferrosos , Hidrogeles , Lignina , Tetraciclina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA