Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Cancers (Basel) ; 11(12)2019 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-31805631

RESUMEN

Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related mortality. Molecular heterogeneity and absence of biomarkers for patient allocation to the best therapeutic option contribute to poor prognosis of advanced stages. Aberrant microRNA (miRNA) expression is associated with HCC development and progression and influences drug resistance. Therefore, miRNAs have been assayed as putative biomarkers and therapeutic targets. MiRNA-based therapeutic approaches demonstrated safety profiles and antitumor efficacy in HCC animal models; nevertheless, caution should be used when transferring preclinical findings to the clinics, due to possible molecular inconsistency between animal models and the heterogeneous pattern of the human disease. In this context, models with defined genetic and molecular backgrounds might help to identify novel therapeutic options for specific HCC subgroups. In this review, we describe rodent models of HCC, emphasizing their representativeness with the human pathology and their usefulness as preclinical tools for assessing miRNA-based therapeutic strategies.

2.
Cancers (Basel) ; 11(11)2019 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-31739536

RESUMEN

Hepatocellular carcinoma (HCC) is a deadly disease and therapeutic efficacy in advanced HCC is limited. Since progression of chronic liver disease to HCC involves a long latency period of a few decades, a significant window of therapeutic opportunities exists for prevention of HCC and improve patient prognosis. Nonetheless, there has been no clinical advancement in instituting HCC chemopreventive strategies. Some of the major challenges are heterogenous genetic aberrations of HCC, significant modulation of tumor microenvironment and incomplete understanding of HCC tumorigenesis. To this end, animal models of HCC are valuable tools to evaluate biology of tumor initiation and progression with specific insight into molecular and genetic mechanisms involved. In this review, we describe various animal models of HCC that facilitate effective ways to study therapeutic prevention strategies that have translational potential to be evaluated in a clinical context.

3.
Front Oncol ; 9: 988, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31612113

RESUMEN

microRNAs (miRNAs) regulate gene expression by modulating the translation of protein-coding RNAs. Their aberrant expression is involved in various human diseases, including cancer. Here, we summarize the experimental pieces of evidence that proved how dysregulated miRNA expression can lead to RAS (HRAS, KRAS, or NRAS) activation irrespective of their oncogenic mutations. These findings revealed relevant pathogenic mechanisms as well as mechanisms of resistance to target therapies. Based on this knowledge, potential approaches for the control of RAS oncogenic activation can be envisioned.

4.
Oncogene ; 38(45): 7035-7045, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31409896

RESUMEN

Metformin is a hypoglycaemic agent used to treat type 2 diabetes mellitus (DM2) patients, with a broad safety profile. Since previous epidemiological studies had shown that the incidence of hepatocellular carcinoma (HCC) decreased significantly in metformin treated DM2 patients, we hypothesised that intervention with metformin could reduce the risk of neoplastic transformation of hepatocytes. HCC is the most common primary liver malignancy and it generally originates in a background of liver fibrosis and cirrhosis. In the present study, we took advantage of a transgenic mouse (TG221) characterized by microRNA-221 overexpression, with cirrhotic liver background induced by chronic administration of carbon tetrachloride (CCl4). This mouse model develops fibrosis, cirrhosis and liver tumours that become visible in 100% of mice at 5-6 months of age. Our results demonstrated that metformin intervention improves liver function, inhibits hepatic stellate cell (HSC) activation, reduces liver fibrosis, depletes lipid accumulation in hepatocytes, halts progression to decompensated cirrhosis and abrogates development HCC in CCl4 challenged transgenic mouse model. The study establishes the rationale for investigating metformin in cirrhotic patients regardless of concomitant DM2 status.


Asunto(s)
Carcinoma Hepatocelular/prevención & control , Transformación Celular Neoplásica/efectos de los fármacos , Modelos Animales de Enfermedad , Fibrosis/tratamiento farmacológico , Hipoglucemiantes/farmacología , Neoplasias Hepáticas Experimentales/prevención & control , Metformina/farmacología , Animales , Tetracloruro de Carbono/toxicidad , Carcinoma Hepatocelular/inducido químicamente , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Transformación Celular Neoplásica/inducido químicamente , Transformación Celular Neoplásica/patología , Fibrosis/etiología , Fibrosis/patología , Humanos , Neoplasias Hepáticas Experimentales/inducido químicamente , Neoplasias Hepáticas Experimentales/genética , Neoplasias Hepáticas Experimentales/patología , Masculino , Ratones , Ratones Transgénicos , MicroARNs/genética
5.
NPJ Breast Cancer ; 5: 4, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30675514

RESUMEN

The effective treatment of cerebral metastases from HER2-positive breast cancer remains an unmet need. Recent studies indicate that activated astrocytes and brain endothelial cells exert chemoprotective effects on cancer cells through direct physical interaction. Here we report that the endothelin axis mediates protection of HER2-amplified brain metastatic breast cancers to the anti-HER2 antibody-drug conjugate ado-trastuzumab emtansine (T-DM1). Macitentan, a dual inhibitor of endothelin receptors A and B, improves the efficacy of T-DM1 against breast cancers grown in the brain. We show that direct contact of brain stroma with cancer cells is required for protection to T-DM1. Our data suggest that targeting the endothelin axis may be beneficial when anti-signaling agent and cytotoxic agent are combined. These findings may contribute to the development of therapeutic approaches with enhanced efficacy in the brain microenvironment.

6.
PLoS One ; 13(8): e0201809, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30075027

RESUMEN

BACKGROUND: First line chemotherapy is effective in 75 to 80% of patients with metastatic colorectal cancer (mCRC). We studied whether microRNA (miR) expression profiles can predict treatment outcome for first line fluoropyrimidine containing systemic therapy in patients with mCRC. METHODS: MiR expression levels were determined by next generation sequencing from snap frozen tumor samples of 88 patients with mCRC. Predictive miRs were selected with penalized logistic regression and posterior forward selection. The prediction co-efficients of the miRs were re-estimated and validated by real-time quantitative PCR in an independent cohort of 81 patients with mCRC. RESULTS: Expression levels of miR-17-5p, miR-20a-5p, miR-30a-5p, miR-92a-3p, miR-92b-3p and miR-98-5p in combination with age, tumor differentiation, adjuvant therapy and type of systemic treatment, were predictive for clinical benefit in the training cohort with an AUC of 0.78. In the validation cohort the addition of the six miR signature to the four clinicopathological factors demonstrated a significant increased AUC for predicting treatment response versus those with stable disease (SD) from 0.79 to 0.90. The increase for predicting treatment response versus progressive disease (PD) and for patients with SD versus those with PD was not significant. in the validation cohort. MiR-17-5p, miR-20a-5p and miR-92a-3p were significantly upregulated in patients with treatment response in both the training and validation cohorts. CONCLUSION: A six miR expression signature was identified that predicted treatment response to fluoropyrimidine containing first line systemic treatment in patients with mCRC when combined with four clinicopathological factors. Independent validation demonstrated added predictive value of this miR-signature for predicting treatment response versus SD. However, added predicted value for separating patients with PD could not be validated. The clinical relevance of the identified miRs for predicting treatment response has to be further explored.


Asunto(s)
Neoplasias Colorrectales/diagnóstico , Neoplasias Colorrectales/terapia , MicroARNs/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Antineoplásicos/uso terapéutico , Área Bajo la Curva , Biomarcadores de Tumor/metabolismo , Estudios de Cohortes , Neoplasias Colorrectales/patología , Progresión de la Enfermedad , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Persona de Mediana Edad , Pronóstico , Curva ROC
7.
Oncotarget ; 9(20): 15350-15364, 2018 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-29632649

RESUMEN

Hepatocellular carcinoma (HCC) is the most common liver cancer and second leading cause of cancer related death worldwide. Most HCCs occur in a damaged cirrhotic background and it may be difficult to discriminate between regenerative nodules and early HCCs. No dependable molecular biomarker exists for the early detection of HCC. MicroRNAs (miRNAs) have attracted attention as potential blood-based biomarkers. To identify circulating miRNAs with diagnostic potential in HCC, we performed preliminary RNAseq studies on plasma samples from a small set of HCC patients, cirrhotic patients and healthy controls. Then, out of the identified miRNAs, we investigated miR-101-3p, miR-106b-3p, miR-1246 and miR-411-5p in plasma of independent HCC patients' cohorts. The use of droplet digital PCR (ddPCR) confirmed the aberrant levels of these miRNAs. The diagnostic performances of each miRNA and their combinations were measured using Receiver Operating Characteristic (ROC) curve analyses: a classifier consisting of miR-101-3p, miR-1246 and miR-106b-3p produced the best diagnostic precision in plasma of HCC vs. cirrhotic patients (AUC = 0.99). A similar performance was found when the levels of miRNAs of HCC patients were compared to healthy controls (AUC = 1.00). We extended the analyses of the same miRNAs to serum samples. In serum of HCC vs. cirrhotic patients, the combination of miR-101-3p and miR-106b-3p exhibited the best diagnostic accuracy with an AUC = 0.96. Thus, circulating miR-101-3p, miR-106b-3p and miR-1246, either individually or in combination, exhibit a considerable potential value as diagnostic biomarkers of HCC.

8.
Cancer Lett ; 419: 167-174, 2018 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-29366802

RESUMEN

Proliferating cancer cells reprogram their metabolic circuitry to thrive in an environment deficient in nutrients and oxygen. Cancer cells exhibit a higher rate of glucose metabolism than normal somatic cells, which is achieved by switching from oxidative phosphorylation to aerobic glycolysis to meet the energy and metabolites demands of tumour progression. This phenomenon, which is known as the Warburg effect, has generated renewed interest in the process of glucose metabolism reprogramming in cancer cells. Several regulatory pathways along with glycolytic enzymes are responsible for the emergence of glycolytic dependence. Non-coding (nc)RNAs are a class of functional RNA molecules that are not translated into proteins but regulate target gene expression. NcRNAs have been shown to be involved in various biological processes, including glucose metabolism. In this review, we describe the regulatory role of ncRNAs-specifically, microRNAs and long ncRNAs-in the glycolytic switch and propose that ncRNA-based therapeutics can be used to inhibit the process of glucose metabolism reprogramming in cancer cells.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Glucosa/metabolismo , Glucólisis/genética , Neoplasias/genética , ARN no Traducido/genética , Humanos , MicroARNs/genética , Modelos Genéticos , Neoplasias/metabolismo , Neoplasias/patología , ARN Largo no Codificante/genética , Transducción de Señal/genética
9.
Microcirculation ; 23(3): 191-206, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26808917

RESUMEN

With the current epidemic of obesity, a large number of patients diagnosed with cancer are overweight or obese. Importantly, this excess body weight is associated with tumor progression and poor prognosis. The mechanisms for this worse outcome, however, remain poorly understood. We review here the epidemiological evidence for the association between obesity and cancer, and discuss potential mechanisms focusing on angiogenesis and inflammation. In particular, we will discuss how the dysfunctional angiogenesis and inflammation occurring in adipose tissue in obesity may promote tumor progression, resistance to chemotherapy, and targeted therapies such as anti-angiogenic and immune therapies. Better understanding of how obesity fuels tumor progression and therapy resistance is essential to improve the current standard of care and the clinical outcome of cancer patients. To this end, we will discuss how an anti-diabetic drug such as metformin can overcome these adverse effects of obesity on the progression and treatment resistance of tumors.


Asunto(s)
Resistencia a Antineoplásicos/efectos de los fármacos , Metformina/uso terapéutico , Neoplasias , Neovascularización Patológica , Obesidad , Animales , Humanos , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Inflamación/patología , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/patología , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/metabolismo , Neovascularización Patológica/patología , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Obesidad/patología
10.
J Natl Cancer Inst ; 108(2)2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26547932

RESUMEN

BACKGROUND: Central nervous system (CNS) metastases represent a major problem in the treatment of human epidermal growth factor receptor 2 (HER2)-positive breast cancer because of the disappointing efficacy of HER2-targeted therapies against brain lesions. The antibody-drug conjugate ado-trastuzumab emtansine (T-DM1) has shown efficacy in trastuzumab-resistant systemic breast cancer. Here, we tested the hypothesis that T-DM1 could overcome trastuzumab resistance in murine models of brain metastases. METHODS: We treated female nude mice bearing BT474 or MDA-MB-361 brain metastases (n = 9-11 per group) or cancer cells grown in organotypic brain slice cultures with trastuzumab or T-DM1 at equivalent or equipotent doses. Using intravital imaging, molecular techniques and histological analysis we determined tumor growth, mouse survival, cancer cell apoptosis and proliferation, tumor drug distribution, and HER2 signaling. Data were analyzed with one-way analysis of variance (ANOVA), Kaplan-Meier analysis, and Coefficient of Determination. All statistical tests were two-sided. RESULTS: T-DM1 delayed the growth of HER2-positive breast cancer brain metastases compared with trastuzumab. These findings were consistent between HER2-driven and PI3K-driven tumors. The activity of T-DM1 resulted in a survival benefit (median survival for BT474 tumors: 28 days for trastuzumab vs 112 days for T-DM1, hazard ratio = 6.2, 95% confidence interval = 6.1 to 85.84, P < .001). No difference in drug distribution or HER2-signaling was revealed between the two groups. However, T-DM1 led to a statistically significant increase in tumor cell apoptosis (one-way ANOVA for ApopTag, P < .001), which was associated with mitotic catastrophe. CONCLUSIONS: T-DM1 can overcome resistance to trastuzumab therapy in HER2-driven or PI3K-driven breast cancer brain lesions due to the cytotoxicity of the DM1 component. Clinical investigation of T-DM1 for patients with CNS metastases from HER2-positive breast cancer is warranted.


Asunto(s)
Anticuerpos Monoclonales Humanizados/farmacología , Antineoplásicos/farmacología , Biomarcadores de Tumor/análisis , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/secundario , Neoplasias de la Mama/patología , Maitansina/análogos & derivados , Receptor ErbB-2/análisis , Ado-Trastuzumab Emtansina , Animales , Anticuerpos Monoclonales Humanizados/administración & dosificación , Antineoplásicos/administración & dosificación , Apoptosis/efectos de los fármacos , Western Blotting , Neoplasias Encefálicas/química , Neoplasias de la Mama/química , Proliferación Celular/efectos de los fármacos , Esquema de Medicación , Resistencia a Antineoplásicos , Femenino , Perfilación de la Expresión Génica , Estimación de Kaplan-Meier , Maitansina/administración & dosificación , Maitansina/farmacología , Ratones , Ratones Desnudos , Análisis por Micromatrices , Microscopía Electrónica , Oportunidad Relativa , Trastuzumab , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA