Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Cancer J ; 30(5): 320-328, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39312452

RESUMEN

ABSTRACT: Cancer development takes 10 to 50 years, and epigenetics plays an important role. Recent evidence suggests that ~80% of human cancers are linked to environmental factors impinging upon genetics/epigenetics. Because advanced metastasized cancers are resistant to radiation/chemotherapeutic drugs, cancer prevention by relatively nontoxic "epigenetic modifiers" will be logical. Many dietary phytochemicals possess powerful antioxidant and anti-inflammatory properties that are hallmarks of cancer prevention. Dietary phytochemicals can regulate gene expression of the cellular genome via epigenetic mechanisms. In this review, we will summarize preclinical studies that demonstrate epigenetic mechanisms of dietary phytochemicals in skin, colorectal, and prostate cancer prevention. Key examples of the importance of epigenetic regulation in carcinogenesis include hypermethylation of the NRF2 promoter region in cancer cells, resulting in inhibition of NRF2-ARE signaling. Many dietary phytochemicals demethylate NRF2 promoter region and restore NRF2 signaling. Phytochemicals can also inhibit inflammatory responses via hypermethylation of inflammation-relevant genes to block gene expression. Altogether, dietary phytochemicals are excellent candidates for cancer prevention due to their low toxicity, potent antioxidant and anti-inflammatory properties, and powerful epigenetic effects in reversing procarcinogenic events.


Asunto(s)
Epigénesis Genética , Neoplasias , Fitoquímicos , Humanos , Fitoquímicos/farmacología , Fitoquímicos/uso terapéutico , Epigénesis Genética/efectos de los fármacos , Neoplasias/prevención & control , Neoplasias/genética , Metilación de ADN/efectos de los fármacos , Animales , Dieta , Factor 2 Relacionado con NF-E2/metabolismo
2.
Carcinogenesis ; 45(5): 288-299, 2024 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-38466106

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental carcinogens accountable to developing skin cancers. Recently, we reported that exposure to benzo[a]pyrene (B[a]P), a common PAH, causes epigenetic and metabolic alterations in the initiation, promotion and progression of non-melanoma skin cancer (NMSC). As a follow-up investigation, this study examines how dietary triterpenoid ursolic acid (UA) regulates B[a]P-driven epigenetic and metabolic pathways in SKH-1 hairless mice. Our results show UA intercepts against B[a]P-induced tumorigenesis at different stages of NMSC. Epigenomic cytosines followed by guanine residues (CpG) methyl-seq data showed UA diminished B[a]P-mediated differentially methylated regions (DMRs) profiles. Transcriptomic RNA-seq revealed UA revoked B[a]P-induced differentially expressed genes (DEGs) of skin cancer-related genes, such as leucine-rich repeat LGI family member 2 (Lgi2) and kallikrein-related peptidase 13 (Klk13), indicating UA plays a vital role in B[a]P-mediated gene regulation and its potential consequences in NMSC interception. Association analysis of DEGs and DMRs found that the mRNA expression of KLK13 gene was correlated with the promoter CpG methylation status in the early-stage comparison group, indicating UA could regulate the KLK13 by modulating its promoter methylation at an early stage of NMSC. The metabolomic study showed UA alters B[a]P-regulated cancer-associated metabolisms like thiamin metabolism, ascorbate and aldarate metabolism during the initiation phase; pyruvate, citrate and thiamin metabolism during the promotion phase; and beta-alanine and pathothenate coenzyme A (CoA) biosynthesis during the late progression phase. Taken together, UA reverses B[a]P-driven epigenetic, transcriptomic and metabolic reprogramming, potentially contributing to the overall cancer interception against B[a]P-mediated NMSC.


Asunto(s)
Benzo(a)pireno , Metilación de ADN , Epigénesis Genética , Ratones Pelados , Neoplasias Cutáneas , Triterpenos , Ácido Ursólico , Animales , Neoplasias Cutáneas/inducido químicamente , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/patología , Neoplasias Cutáneas/metabolismo , Benzo(a)pireno/toxicidad , Triterpenos/farmacología , Ratones , Epigénesis Genética/efectos de los fármacos , Metilación de ADN/efectos de los fármacos , Carcinógenos Ambientales/toxicidad , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Carcinogénesis/efectos de los fármacos , Carcinogénesis/genética , Carcinogénesis/inducido químicamente
3.
Pharm Res ; 40(11): 2699-2714, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37726406

RESUMEN

Since ancient times, dietary phytochemicals are known for their medicinal properties. They are broadly classified into polyphenols, terpenoids, alkaloids, phytosterols, and organosulfur compounds. Currently, there is considerable interest in their potential health effects against various diseases, including lung cancer. Lung cancer is the leading cause of cancer deaths with an average of five-year survival rate of lung cancer patients limited to just 14%. Identifying potential early molecular biomarkers of pre-malignant lung cancer cells may provide a strong basis to develop early cancer detection and interception methods. In this review, we will discuss molecular changes, including genetic alterations, inflammation, signal transduction pathways, redox imbalance, epigenetic and proteomic signatures associated with initiation and progression of lung carcinoma. We will also highlight molecular targets of phytochemicals during lung cancer development. These targets mainly consist of cellular signaling pathways, epigenetic regulators and metabolic reprogramming. With growing interest in natural products research, translation of these compounds into new cancer prevention approaches to medical care will be urgently needed. In this context, we will also discuss the overall pharmacokinetic challenges of phytochemicals in translating to humans. Lastly, we will discuss clinical trials of phytochemicals in lung cancer patients.


Asunto(s)
Anticarcinógenos , Neoplasias Pulmonares , Neoplasias , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/prevención & control , Neoplasias Pulmonares/patología , Anticarcinógenos/uso terapéutico , Dieta , Proteómica , Neoplasias/tratamiento farmacológico , Fitoquímicos/farmacología , Fitoquímicos/uso terapéutico , Biomarcadores
4.
Eur J Pharmacol ; 953: 175866, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37331680

RESUMEN

BACKGROUND: Diabetic nephropathy (DN) is the leading cause of end-stage renal disease in the United States. Emerging evidence suggests that mitochondrial metabolism and epigenetics play an important role in the development and progression of DN and its complications. For the first time, we investigated the regulation of cellular metabolism, DNA methylation, and transcriptome status by high glucose (HG) in the kidney of leptin receptor-deficient db/db mice using multi-omics approaches. METHODS: The metabolomics was performed by liquid-chromatography-mass spectrometry (LC-MS), while epigenomic CpG methylation coupled with transcriptomic gene expression was analyzed by next-generation sequencing. RESULTS: LC-MS analysis of glomerular and cortex tissue samples of db/db mice showed that HG regulated several cellular metabolites and metabolism-related signaling pathways, including S-adenosylmethionine, S-adenosylhomocysteine, methionine, glutamine, and glutamate. Gene expression study by RNA-seq analysis suggests transforming growth factor beta 1 (TGFß1) and pro-inflammatory pathways play important roles in early DN. Epigenomic CpG methyl-seq showed HG revoked a list of differentially methylated regions in the promoter region of the genes. Integrated analysis of DNA methylation in the promoter regions of genes and gene expression changes across time points identified several genes persistently altered in DNA methylation and gene expression. Cyp2d22, Slc1a4, and Ddah1 are some identified genes that could reflect dysregulated genes involved in renal function and DN. CONCLUSION: Our results suggest that leptin receptor deficiency leading to HG regulates metabolic rewiring, including SAM potentially driving DNA methylation and transcriptomic signaling that could be involved in the progression of DN.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Animales , Ratones , Diabetes Mellitus/metabolismo , Nefropatías Diabéticas/genética , Nefropatías Diabéticas/metabolismo , Epigénesis Genética , Epigenómica , Riñón/metabolismo , Ratones Endogámicos , Receptores de Leptina/genética , Receptores de Leptina/metabolismo
5.
Carcinogenesis ; 44(5): 436-449, 2023 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-37100755

RESUMEN

Non-melanoma skin cancer (NMSC) is the most common cancer in the world. Environmental exposure to carcinogens is one of the major causes of NMSC initiation and progression. In the current study, we utilized a two-stage skin carcinogenesis mouse model generated by sequential exposure to cancer-initiating agent benzo[a]pyrene (BaP) and promoting agent 12-O-tetradecanoylphorbol-13-acetate (TPA), to study epigenetic, transcriptomic and metabolic changes at different stages during the development of NMSC. BaP/TPA caused significant alterations in DNA methylation and gene expression profiles in skin carcinogenesis, as evidenced by DNA-seq and RNA-seq analysis. Correlation analysis between differentially expressed genes and differentially methylated regions found that the mRNA expression of oncogenes leucine rich repeat LGI family member 2 (Lgi2), kallikrein-related peptidase 13 (Klk13) and SRY-Box transcription factor (Sox5) are correlated with the promoter CpG methylation status, indicating BaP/TPA regulates these oncogenes through regulating their promoter methylation at different stages of NMSC. Pathway analysis identified that the modulation of macrophage-stimulating protein-recepteur d'origine nantais and high-mobility group box 1 signaling pathways, superpathway of melatonin degradation, melatonin degradation 1, sirtuin signaling and actin cytoskeleton signaling pathways are associated with the development of NMSC. The metabolomic study showed BaP/TPA regulated cancer-associated metabolisms like pyrimidine and amino acid metabolisms/metabolites and epigenetic-associated metabolites, such as S-adenosylmethionine, methionine and 5-methylcytosine, indicating a critical role in carcinogen-mediated metabolic reprogramming and its consequences on cancer development. Altogether, this study provides novel insights integrating methylomic, transcriptomic and metabolic-signaling pathways that could benefit future skin cancer treatment and interception studies.


Asunto(s)
Carcinógenos Ambientales , Melatonina , Neoplasias Cutáneas , Ratones , Animales , Benzo(a)pireno/toxicidad , Benzo(a)pireno/metabolismo , Carcinogénesis/genética , Neoplasias Cutáneas/inducido químicamente , Neoplasias Cutáneas/genética , Acetato de Tetradecanoilforbol , Epigénesis Genética
6.
Mol Nutr Food Res ; 66(12): e2200028, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35429118

RESUMEN

SCOPE: Butyrate (B) is a short-chain fatty acid produced by dietary fiber, known to inhibit histone deacetylases (HDACs) and possess cancer-preventive/anticancer effects. However, the role of B in metabolic rewiring, epigenomic reprogramming, transcriptomic network, NRF2 signaling, and eliciting cancer-preventive effects in colorectal cancer (CRC) HCT116 cell remains unclear. METHODS AND RESULTS: Sodium butyrate (NaB) dose-dependently inhibits the growth of CRC HCT116 cells. NaB inhibits NRF2/NRF2-target genes and blocks NRF2-ARE signaling. NaB increases NRF2 negative regulator KEAP1 expression through inhibiting its promoter methylation. Associative analysis of DEGs (differentially expressed genes) from RNA-seq and DMRs (differentially methylated regions) from CpG methyl-seq identified the tumor suppressor gene ABCA1 and tumor promote gene EGR3 are correlated with their promoters' CpG methylation indicating NaB regulates cancer markers through modulating their promoter methylation. NaB activated the mitochondrial tricarboxylic acid (TCA) cycle while inhibited the methionine metabolism which are both tightly coupled to the epigenetic machinery. NaB regulates the epigenetic enzymes/genes including DNMT1, HAT1, KDM1A, KDM1B, and TET1. Altogether, B's regulation of metabolites coupled to the epigenetic enzymes illustrates the potential underlying biological connectivity between metabolomics and epigenomics. CONCLUSION: B regulates KEAP1/NRF2 signaling, drives metabolic rewiring, CpG methylomic, and transcriptomic reprogramming contributing to the overall cancer-prevention/anticancer effect in the CRC cell model.


Asunto(s)
Neoplasias del Colon , Epigenómica , Ácido Butírico/farmacología , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/genética , Metilación de ADN , Epigénesis Genética , Histona Demetilasas/genética , Histona Demetilasas/metabolismo , Humanos , Proteína 1 Asociada A ECH Tipo Kelch/genética , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Proteínas Proto-Oncogénicas/metabolismo
7.
Prev Nutr Food Sci ; 27(4): 335-346, 2022 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-36721757

RESUMEN

Metabolic rewiring and epigenetic reprogramming are closely inter-related, and mutually regulate each other to control cell growth in cancer initiation, promotion, progression, and metastasis. Epigenetics plays a crucial role in regulating normal cellular functions as well as pathological conditions in many diseases, including cancer. Conversely, certain mitochondrial metabolites are considered as essential cofactors and regulators of epigenetic mechanisms. Furthermore, dysregulation of metabolism promotes tumor cell growth and reprograms the cells to produce metabolites and bioenergy needed to support cancer cell proliferation. Hence, metabolic reprogramming which alters the metabolites/epigenetic cofactors, would drive the epigenetic landscape, including DNA methylation and histone modification, that could lead to cancer initiation, promotion, and progression. Recognizing the diverse array of benefits of phytochemicals, they are gaining increasing interest in cancer interception and treatment. One of the significant mechanisms of cancer interception and treatment by phytochemicals is reprogramming of the key metabolic pathways and remodeling of cancer epigenetics. This review focuses on the metabolic remodeling and epigenetics reprogramming in cancer and investigates the potential mechanisms by which phytochemicals can mitigate cancer.

8.
Free Radic Biol Med ; 179: 328-336, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33359432

RESUMEN

Biological redox signaling plays an important role in many diseases. Redox signaling involves reductive and oxidative mechanisms. Oxidative stress occurs when reductive mechanism underwhelms oxidative challenges. Cellular oxidative stress occurs when reactive oxygen/nitrogen species (RO/NS) exceed the cellular reductive/antioxidant capacity. Endogenously produced RO/NS from mitochondrial metabolic citric-acid-cycle coupled with electron-transport-chain or exogenous stimuli trigger cellular signaling events leading to homeostatic response or pathological damage. Recent evidence suggests that RO/NS also modulate epigenetic machinery driving gene expression. RO/NS affect DNA methylation/demethylation, histone acetylation/deacetylation or histone methylation/demethylation. Many health beneficial phytochemicals possess redox capability that counteract RO/NS either by directly scavenging the radicals or via inductive mechanism of cellular defense antioxidant/reductive enzymes. Amazingly, these phytochemicals also possess epigenetic modifying ability. This review summarizes the latest advances on the interactions between redox signaling, mitochondrial metabolism, epigenetics and redox active phytochemicals and the future challenges of integrating these events in human health.


Asunto(s)
Epigénesis Genética , Transducción de Señal , Humanos , Oxidación-Reducción , Estrés Oxidativo , Fitoquímicos/farmacología
9.
Cancer Prev Res (Phila) ; 14(2): 151-164, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33055265

RESUMEN

Cancer is a complex disease and cancer development takes 10-50 years involving epigenetics. Evidence suggests that approximately 80% of human cancers are linked to environmental factors impinging upon genetics/epigenetics. Because advanced metastasized cancers are resistant to radiotherapy/chemotherapeutic drugs, cancer prevention by relatively nontoxic chemopreventive "epigenetic modifiers" involving epigenetics/epigenomics is logical. Isothiocyanates are relatively nontoxic at low nutritional and even higher pharmacologic doses, with good oral bioavailability, potent antioxidative stress/antiinflammatory activities, possess epigenetic-modifying properties, great anticancer efficacy in many in vitro cell culture and in vivo animal models. This review summarizes the latest advances on the role of epigenetics/epigenomics by isothiocyanates in prevention of skin, colon, lung, breast, and prostate cancers. The exact molecular mechanism how isothiocyanates modify the epigenetic/epigenomic machinery is unclear. We postulate "redox" processes would play important roles. In addition, isothiocyanates sulforaphane and phenethyl isothiocyanate, possess multifaceted molecular mechanisms would be considered as "general" cancer preventive agents not unlike chemotherapeutic agents like platinum-based or taxane-based drugs. Analogous to chemotherapeutic agents, the isothiocyanates would need to be used in combination with other nontoxic chemopreventive phytochemicals or drugs such as NSAIDs, 5-α-reductase/aromatase inhibitors targeting different signaling pathways would be logical for the prevention of progression of tumors to late advanced metastatic states.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Epigénesis Genética/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Isotiocianatos/uso terapéutico , Neoplasias/prevención & control , Administración Oral , Animales , Antiinflamatorios no Esteroideos/farmacología , Antiinflamatorios no Esteroideos/uso terapéutico , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Inhibidores de la Aromatasa/farmacología , Inhibidores de la Aromatasa/uso terapéutico , Disponibilidad Biológica , Modelos Animales de Enfermedad , Humanos , Isotiocianatos/farmacología , Neoplasias/genética , Oxidación-Reducción/efectos de los fármacos
10.
Curr Pharmacol Rep ; 6(3): 56-70, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32395418

RESUMEN

The current pandemic of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has presented unprecedented challenges to the healthcare systems in almost every country around the world. Currently, there are no proven effective vaccines or therapeutic agents against the virus. Current clinical management includes infection prevention and control measures and supportive care including supplemental oxygen and mechanical ventilatory support. Evolving research and clinical data regarding the virologic SARS-CoV-2 suggest a potential list of repurposed drugs with appropriate pharmacological effects and therapeutic efficacies in treating COVID-19 patients. In this review, we will update and summarize the most common and plausible drugs for the treatment of COVID-19 patients. These drugs and therapeutic agents include antiviral agents (remdesivir, hydroxychloroquine, chloroquine, lopinavir, umifenovir, favipiravir, and oseltamivir), and supporting agents (Ascorbic acid, Azithromycin, Corticosteroids, Nitric oxide, IL-6 antagonists), among others. We hope that this review will provide useful and most updated therapeutic drugs to prevent, control, and treat COVID-19 patients until the approval of vaccines and specific drugs targeting SARS-CoV-2.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA