Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Chemistry ; : e202401208, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38953321

RESUMEN

Anion exchange membrane fuel cell (AEMFC) is an emerging and promising technology that can help realize a carbon-neutral, sustainable economy. Also, compared to the proton exchange membrane counterpart, AEMFC can achieve comparable cell outputs with lower costs due to the applicability of non-platinum group metal electrocatalysts for the reaction on the electrodes' surfaces. However, the wide application of the AEMFCs has been impeded by the unsatisfactory stability and performance of the hydroxide-conductive membranes in the past. Recently researchers have made breakthroughs using polyarylene (PA)-based AEMs. This article summarizes the recent advances of a class of AEMs with aromatic backbone without ether bonds, mainly synthesized by Friedel-Crafts polycondensation. Such PA-based AEMs showed high chemical/mechanical stabilities and ionic conductivity, and even the fuel cell with those AEMs showed impressive peak power density of up to 2.58 W cm-2. In this concept article, we classify major strategies for making PA-based AEMs to show the recent trends, highlight synthesis, characterization, and properties, and provide a brief outlook.

2.
Chem Sci ; 15(23): 9000, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38873059

RESUMEN

[This corrects the article DOI: 10.1039/D4SC02420F.].

3.
Chem Sci ; 15(21): 7949-7964, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38817581

RESUMEN

Lithium-sulfur batteries (LSBs) with two typical platforms during discharge are prone to the formation of soluble lithium polysulfides (LiPS), leading to a decrease in the cycling life of the battery. Under practical working conditions, the transformation of S8 into Li2S is cross-executed rather than a stepwise reaction, where the liquid LiPS to solid Li2S conversion can occur at a high state of charge (SOC) to maintain the current requirement. Therefore, advancing Li2S deposition can effectively reduce the accumulation of LiPSs and ultimately improve the reaction kinetics. Herein, a "butterfly material" GeS2-MoS2/rGO is used as a sulfur host. Rich catalytic heterointerfaces can be obtained via the abundant S-S bonds formed between GeS2 and MoS2. MoS2 (left wing) can enhance LiPS adsorption, while the lattice-matching nature of Fdd2 GeS2 (right wing) and Fm3̄m Li2S can induce multiple nucleation and regulate the 3D growth of Li2S. Li2S deposition can be advanced to occur at 80% SOC, thereby effectively inhibiting the accumulation of soluble LiPSs. Attributed to the synergistic effect of catalytic and lattice-matching properties, robust coin and pouch LSBs can be achieved.

4.
Adv Mater ; : e2402979, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38811011

RESUMEN

Copper (Cu) nanomaterials are a unique kind of electrocatalysts for high-value multi-carbon production in carbon dioxide reduction reaction (CO2RR), which holds enormous potential in attaining carbon neutrality. However, phase engineering of Cu nanomaterials remains challenging, especially for the construction of unconventional phase Cu-based asymmetric heteronanostructures. Here the site-selective growth of Cu on unusual phase gold (Au) nanorods, obtaining three kinds of heterophase fcc-2H-fcc Au-Cu heteronanostructures is reported. Significantly, the resultant fcc-2H-fcc Au-Cu Janus nanostructures (JNSs) break the symmetric growth mode of Cu on Au. In electrocatalytic CO2RR, the fcc-2H-fcc Au-Cu JNSs exhibit excellent performance in both H-type and flow cells, with Faradaic efficiencies of 55.5% and 84.3% for ethylene and multi-carbon products, respectively. In situ characterizations and theoretical calculations reveal the co-exposure of 2H-Au and 2H-Cu domains in Au-Cu JNSs diversifies the CO* adsorption configurations and promotes the CO* spillover and subsequent C-C coupling toward ethylene generation with reduced energy barriers.

5.
Angew Chem Int Ed Engl ; 63(22): e202403633, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38516798

RESUMEN

A glut of dinitrogen-derived ammonia (NH3) over the past century has resulted in a heavily imbalanced nitrogen cycle and consequently, the large-scale accumulation of reactive nitrogen such as nitrates in our ecosystems has led to detrimental environmental issues. Electrocatalytic upcycling of waste nitrogen back into NH3 holds promise in mitigating these environmental impacts and reducing reliance on the energy-intensive Haber-Bosch process. Herein, we report a high-performance electrolyzer using an ultrahigh alkalinity electrolyte, NaOH-KOH-H2O, for low-cost NH3 electrosynthesis. At 3,000 mA/cm2, the device with a Fe-Cu-Ni ternary catalyst achieves an unprecedented faradaic efficiency (FE) of 92.5±1.5 % under a low cell voltage of 3.83 V; whereas at 1,000 mA/cm2, an FE of 96.5±4.8 % under a cell voltage of only 2.40 V was achieved. Techno-economic analysis revealed that our device cuts the levelized cost of ammonia electrosynthesis by ~40 % ($30.68 for Fe-Cu-Ni vs. $48.53 for Ni foam per kmol-NH3). The NaOH-KOH-H2O electrolyte together with the Fe-Cu-Ni ternary catalyst can enable the high-throughput nitrate-to-ammonia applications for affordable and scalable real-world wastewater treatments.

6.
ACS Nano ; 18(9): 7192-7203, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38385434

RESUMEN

Electrocatalytic carbon dioxide reduction reaction (CO2RR) toward value-added chemicals/fuels has offered a sustainable strategy to achieve a carbon-neutral energy cycle. However, it remains a great challenge to controllably and precisely regulate the coordination environment of active sites in catalysts for efficient generation of targeted products, especially the multicarbon (C2+) products. Herein we report the coordination environment engineering of metal centers in coordination polymers for efficient electroreduction of CO2 to C2+ products under neutral conditions. Significantly, the Cu coordination polymer with Cu-N2S2 coordination configuration (Cu-N-S) demonstrates superior Faradaic efficiencies of 61.2% and 82.2% for ethylene and C2+ products, respectively, compared to the selective formic acid generation on an analogous polymer with the Cu-I2S2 coordination mode (Cu-I-S). In situ studies reveal the balanced formation of atop and bridge *CO intermediates on Cu-N-S, promoting C-C coupling for C2+ production. Theoretical calculations suggest that coordination environment engineering can induce electronic modulations in Cu active sites, where the d-band center of Cu is upshifted in Cu-N-S with stronger selectivity to the C2+ products. Consequently, Cu-N-S displays a stronger reaction trend toward the generation of C2+ products, while Cu-I-S favors the formation of formic acid due to the suppression of C-C couplings for C2+ pathways with large energy barriers.

7.
J Am Chem Soc ; 146(9): 5940-5951, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38386410

RESUMEN

Solid polymer electrolytes (SPEs) are one of the most practical candidates for solid-state batteries owing to their high flexibility and low production cost, but their application is limited by low Li+ conductivity and a narrow electrochemical window. To improve performance, it is necessary to reveal the structure-property relationship of SPEs. Here, 23 fluorinated linear polyesters were prepared by editing the coordination units, flexible linkage segments, and interface passivating groups. Besides the traditionally demonstrated coordinating capability and flexibility of polymer chains, the molecular asymmetry and resulting interchain aggregation are observed critical for Li+ conductivity. By tailoring the molecular asymmetry and coordination ability of polyesters, the Li+ conductivity can be raised by 10 times. Among these polyesters, solvent-free poly(pentanediol adipate) delivers the highest room-temperature Li+ conductivity of 0.59 × 10-4 S cm-1. The chelating coordination of oxalate and Li+ leads to an electron delocalization of alkoxy oxygen, enhancing the antioxidation capability of SPEs. To lower the cost, high-value LiTFSI in SPEs is recycled at 90%, and polyesters can be regenerated at 86%. This work elucidates the structure-property relationship of polyester-based SPEs, displays the design principles of SPEs, and provides a way for the development of sustainable solid-state batteries.

8.
Angew Chem Int Ed Engl ; 63(16): e202400952, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38372593

RESUMEN

Cu-based catalysts have been identified as the most promising candidates for generation of C2+ products in electrochemical CO2 reduction reaction. Defect engineering in catalysts is a widely employed strategy for promoting C-C coupling on Cu. However, comprehensive understanding of defect structure-to-activity relationship has not been obtained. In this study, controllable defects generation is achieved, which leads to a series of Cu-based catalysts with various phase mixing degrees. It is observed that the Faradaic efficiency toward C2+ products increases with the phase mixing degree, reaching 81 % at maximum. In situ infrared absorption spectroscopy reveals that the catalysts with higher phase mixing degree tend to form *CO more easily and possess higher retention of *CO under high overpotential window, thereby promoting C-C coupling. This work sheds new light on the relationship between defects and C-C coupling, and the rational developed of more advanced Cu-base catalysts.

9.
J Am Chem Soc ; 146(3): 1935-1945, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38191290

RESUMEN

The reaction mechanism of CO2 electroreduction on oxide-derived copper has not yet been unraveled even though high C2+ Faradaic efficiencies are commonly observed on these surfaces. In this study, we aim to explore the effects of copper anodization on the adsorption of various CO2RR intermediates using in situ surface-enhanced infrared absorption spectroscopy (SEIRAS) on metallic and mildly anodized copper thin films. The in situ SEIRAS results show that the preoxidation process can significantly improve the overall CO2 reduction activity by (1) enhancing CO2 activation, (2) increasing CO uptake, and (3) promoting C-C coupling. First, the strong *COO- redshift indicates that the preoxidation process significantly enhances the first elementary step of CO2 adsorption and activation. The rapid uptake of adsorbed *COatop also illustrates how a high *CO coverage can be achieved in oxide-derived copper electrocatalysts. Finally, for the first time, we observed the formation of the *COCHO dimer on the anodized copper thin film. Using DFT calculations, we show how the presence of subsurface oxygen within the Cu lattice can improve the thermodynamics of C2 product formation via the coupling of adsorbed *CO and *CHO intermediates. This study advances our understanding of the role of surface and subsurface conditions in improving the catalytic reaction kinetics and product selectivity of CO2 reduction.

10.
Angew Chem Int Ed Engl ; 63(9): e202313858, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38185801

RESUMEN

Catalysts involving post-transition metals have shown almost invincible performance on generating formate in electrochemical CO2 reduction reaction (CO2 RR). Conversely, Cu without post-transition metals has struggled to achieve comparable activity. In this study, a sulfur (S)-doped-copper (Cu)-based catalyst is developed, exhibiting excellent performance in formate generation with a maximum Faradaic efficiency of 92 % and a partial current density of 321 mA cm-2 . Ex situ structural elucidations reveal the presence of abundant grain boundaries and high retention of S-S bonds from the covellite phase during CO2 RR. Furthermore, thermodynamic calculations demonstrate that S-S bonds can moderate the binding energies with various intermediates, further improving the activity of the formate pathway. This work is significant in modifying a low-cost catalyst (Cu) with a non-metallic element (S) to achieve comparable performance to mainstream catalysts for formate generation in industrial grade.

11.
Traffic Inj Prev ; 25(3): 390-399, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38165395

RESUMEN

OBJECTIVES: With the growing market penetration of connected and autonomous vehicles (CAVs), the interaction between conventional human-driven vehicles (HDVs) and CAVs will be inevitable. However, the effects of CAVs in mixed traffic streams have not been extensively studied in China. This study aims to quantify the changes in driving characteristics of an HDV while following a CAV compared to following another HDV and investigate the corresponding impact on traffic safety and the environment caused by these changes. METHODS: Firstly, two scenarios were built on a driving simulation platform. In scenario 1, the driver follows a vehicle programmed to execute the speed profile of the HDV obtained from the Shanghai Naturalistic Driving Study (SH-NDS) project. In scenario 2, the driver follows a vehicle whose speed profile is calibrated according to the Cooperative Adaptive Cruise Control (CACC) follow-along theory. Secondly, the speed, acceleration, and headway of 30 individuals in each following scenario were analyzed. Speed and acceleration volatility (standard deviation, deviation rate) and time-to-collision (TTC) were selected as indexes to assess the safety impact. The emission and fuel consumption models were used to determine the environmental impact after being localized by the parameters. RESULTS: HDVs following CAVs exhibit less driving volatility in speed and acceleration, show remarkable improvements in TTC, consume less fuel, and produce fewer emissions on average. CONCLUSIONS: By introducing CAVs into the road traffic system, traffic operation safety and environmental quality will be improved, with a more stable flow status, lower collision risk, and less air pollution.


Asunto(s)
Conducción de Automóvil , Humanos , Accidentes de Tránsito , Vehículos Autónomos , China , Simulación por Computador , Seguridad
12.
ACS Nano ; 18(6): 5029-5039, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38286031

RESUMEN

Clarifying the structure-reactivity relationship of non-noble-metal electrocatalysts is one of the decisive factors for the practical application of water electrolysis. In this field, the anodic oxygen evolution reaction (OER) with a sluggish kinetic process has become a huge challenge for large-scale production of high-purity hydrogen. Here we synthesize a layered quasi-nevskite metastable-phase cobalt oxide (LQNMP-Co2O3) nanosheet via a simple molten alkali synthesis strategy. The unit-cell parameters of LQNMP-Co2O3 are determined to be a = b = 2.81 Šand c = 6.89 Šwith a space group of P3̅m1 (No. 164). The electrochemical results show that the LQNMP-Co2O3 electrocatalyst enables delivering an ultralow overpotential of 266 mV at a current density of 10 mA cmgeo-2 with excellent durability. The operando XANES and EXAFS analyses clearly reveal the origin of the OER activity and the electrochemical stability of the LQNMP-Co2O3 electrocatalyst. Density functional theory (DFT) simulations show that the energy barrier of the rate-determining step (RDS) (from *O to *OOH) is significantly reduced on the LQNMP-Co2O3 electrocatalyst by comparing with simulated monolayered CoO2 (M-CoO2).

13.
Angew Chem Int Ed Engl ; 63(2): e202314457, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38010613

RESUMEN

Single crystallization of LiNix Coy Mn1-x-y O2 (NCM) is currently an effective strategy to improve the cycling life of NCM cathode, owing to the reduced surface area and enhanced mechanical strength, but the application of single crystal NCM(SC-NCM) is being hindered by severe particle agglomeration and poor C-rate performance. Here, a strategy of three-section-sintering(TSS) with the presence of grain-growth inhibitor was proposed, in which, the TSS includes three sections of phase-formation, grain-growth and phase-preservation. While, the addition of MoO3 inhibits the grain growth and restrains the particle agglomeration. With the help of TSS and 1 mol % of MoO3 , highly dispersed surface Mo-doped SC-NCM(MSC-NCM) cubes are obtained with the average diameter of 1.3 µm. Benefiting from the surface Mo-doping and the reduced surface energy, the Li+ -migration preferred (1 0 4) crystalline facet is exposed as the dominant plane in MSC-NCM cubes, because of which, C-rate performance is significantly improved compared with the regular SC-NCM. Furthermore, this preparation strategy is compatible well with the current industrial production line, providing an easy way for the large-scale production of SC-NCM.

14.
ChemSusChem ; 17(7): e202301399, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38100130

RESUMEN

In this Editorial, Guest Editors Douglas R. MacFarlane, Egill Skúlason, Hideo Hosono and Minhua Shao discuss the newly emerging field of electrochemical nitrogen reduction reaction (NRR) in the Special Issue of ChemSusChem on Sustainable Ammonia Synthesis.

15.
J Am Chem Soc ; 145(50): 27500-27511, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38056604

RESUMEN

Anion-exchange membrane fuel cells (AEMFCs) are promising alternative hydrogen conversion devices. However, the sluggish kinetics of the hydrogen oxidation reaction in alkaline media hinders further development of AEMFCs. As a synthesis method commonly used to prepare disordered PtRu alloys, the impregnation process is ingeniously designed herein to synthesize sub-3 nm Pt@Ru core-shell nanoparticles by sequentially reducing Pt and Ru at different annealing temperatures. This method avoids complex procedures and synthesis conditions for organic synthesis systems, and the atomic structure evolution of the synthesized core-shell nanoparticles can be tracked. The synthesized Pt@Ru electrocatalyst shows an ultrasmall average size of ∼2.5 nm and thereby a large electrochemical surface area (ECSA) of 166.66 m2 gPt+Ru-1. Exchange current densities (j0) normalized to the mass (Pt + Ru) and ECSA of this electrocatalyst are 8.0 and 5.8 times as high as those of commercial Pt/C, respectively. To the best of our knowledge, the achieved mass-normalized j0 measured by rotating disk electrodes is the highest reported so far. The membrane electrode assembly test of the Pt@Ru electrocatalyst shows a peak power density of 1.78 W cm-2 (0.152 mgPt+Ru cmanode-2), which is higher than that of commercial PtRu/C (1.62 W cm-2, 0.211 mgPt+Ru cmanode-2). The improvement of the intrinsic activity can be attributed to the electron transfer from the Ru shell to the Pt core, and the ultrafine particles further enhance the mass activity. This work reveals the feasibility of using simple impregnation to synthesize fine core-shell nanocatalysts and the importance of investigating the atomic structure of PtRu nanoparticles and other disordered alloys.

16.
Angew Chem Int Ed Engl ; 62(52): e202314634, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-37955915

RESUMEN

Surface ligands play an important role in shape-controlled growth and stabilization of colloidal nanocrystals. Their quick removal tends to cause structural deformation and/or aggregation to the nanocrystals. Herein, we demonstrate that the surface ligand based on poly(vinylpyrrolidone) (PVP) can be slowly removed from Pd nanosheets (NSs, 0.93±0.17 nm in thickness) by simply aging the colloidal suspension. The aged Pd NSs show well-preserved morphology, together with significantly enhanced stability toward both e-beam irradiation and electrocatalysis (e.g., ethanol oxidation). It is revealed that the slow desorption of PVP during aging forces the re-exposed Pd atoms to reorganize, facilitating the surface to transform from being nearly perfect to defect-rich. The resultant Pd NSs with abundant defects no longer rely on surface ligand to stabilize the atomic arrangement and thus show excellent structural and electrochemical stability. This work provides a facile and effective method to maintain the integrity of colloidal nanocrystals by slowly removing the surface ligand.

17.
Angew Chem Int Ed Engl ; 62(49): e202313522, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-37855722

RESUMEN

Electrochemical carbon dioxide reduction reaction (CO2 RR) to produce valuable chemicals is a promising pathway to alleviate the energy crisis and global warming issues. However, simultaneously achieving high Faradaic efficiency (FE) and current densities of CO2 RR in a wide potential range remains as a huge challenge for practical implements. Herein, we demonstrate that incorporating bismuth-based (BH) catalysts with L-histidine, a common amino acid molecule of proteins, is an effective strategy to overcome the inherent trade-off between the activity and selectivity. Benefiting from the significantly enhanced CO2 adsorption capability and promoted electron-rich nature by L-histidine integrity, the BH catalyst exhibits excellent FEformate in the unprecedented wide potential windows (>90 % within -0.1--1.8 V and >95 % within -0.2--1.6 V versus reversible hydrogen electrode, RHE). Excellent CO2 RR performance can still be achieved under the low-concentration CO2 feeding (e.g., 20 vol.%). Besides, an extremely low onset potential of -0.05 VRHE (close to the theoretical thermodynamic potential of -0.02 VRHE ) was detected by in situ ultraviolet-visible (UV-Vis) measurements, together with stable operation over 50 h with preserved FEformate of ≈95 % and high partial current density of 326.2 mA cm-2 at -1.0 VRHE .

18.
J Am Chem Soc ; 145(37): 20665-20671, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37672764

RESUMEN

Stoichiometric oxidants are always consumed in organic oxidation reactions. For example, olefins react with peroxy acids to be converted to epoxy, while the oxidant, peroxy acid, is downgraded to carboxylic acid. In this paper, we aim to regenerate carboxylic acid into peroxy acid through electric water splitting at the anode, in order to construct an electrochemical catalytic cycle to accomplish the cycloolefin epoxidation reaction. Benzoic acid, which can be strongly adsorbed onto the anode and rapidly converted to peroxy acid, was selected to catalyze the cycloolefin epoxidation. Furthermore, the peroxybenzoic acid will be further activated on the electrode to fulfill the epoxidation and release the benzoic acid to complete the catalytic cycle. In this designed reaction cycle, benzoic acid acts as a molecular catalyst with the assistance of the electrode-generated reactive oxygen species (ROS). This method can successfully reform the consumable oxidants to molecular catalysts, which can be generalized to other green organic syntheses.

19.
Nat Commun ; 14(1): 6024, 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37758706

RESUMEN

Although the closed pore structure plays a key role in contributing low-voltage plateau capacity of hard carbon anode for sodium-ion batteries, the formation mechanism of closed pores is still under debate. Here, we employ waste wood-derived hard carbon as a template to systematically establish the formation mechanisms of closed pores and their effect on sodium storage performance. We find that the high crystallinity cellulose in nature wood decomposes to long-range carbon layers as the wall of closed pore, and the amorphous component can hinder the graphitization of carbon layer and induce the crispation of long-range carbon layers. The optimized sample demonstrates a high reversible capacity of 430 mAh g-1 at 20 mA g-1 (plateau capacity of 293 mAh g-1 for the second cycle), as well as good rate and stable cycling performances (85.4% after 400 cycles at 500 mA g-1). Deep insights into the closed pore formation will greatly forward the rational design of hard carbon anode with high capacity.

20.
Water Res X ; 20: 100194, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37637860

RESUMEN

Increasingly diverse pathogen occurrence in coastal and mariculture areas demands improved monitoring platforms to prevent economic and public health implications. Accessible databases with up-to-date knowledge and taxonomy are critical for detecting and screening environmental pathogens. Condensed from over 3000 relevant reports in peer reviewed articles, we constructed an aquaculture bacterial pathogen database that provides specialized curation of over 210 bacterial pathogenic species impacting aquaculture. Application of the aquaculture bacterial pathogen database to environmental DNA metabarcoding monitoring data in Hong Kong coastal and mariculture waters effectively characterized regional pathogen profiles over a one-year period and improved identification of new potential pathogen targets. The results highlighted the increase in potential pathogen abundance related to aquaculture activity and the associated inorganic nitrogen load, which was chiefly due to the enrichment of Vibrio during the atypical dry winter season. The value of the aquaculture bacterial pathogen database for empowering environmental DNA-based approaches in coastal marine pathogen surveillance benefits water resource management and aquaculture development on a global scale.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA