RESUMEN
N-methyl-D-aspartate receptors (NMDARs) are ligand-gated ionotropic glutamate receptors that mediate a calcium-permeable component to fast excitatory neurotransmission. NMDARs are heterotetrameric assemblies of two obligate GluN1 subunits (GRIN1) and two GluN2 subunits (GRIN2A-GRIN2D). Sequencing data shows that 43% (297/679) of all currently known NMDAR disease-associated genetic variants are within the GRIN2A gene, which encodes the GluN2A subunit. Here, we show that unlike missense GRIN2A variants, individuals affected with disease-associated null GRIN2A variants demonstrate a transient period of seizure susceptibility that begins during infancy and diminishes near adolescence. We show increased circuit excitability and CA1 pyramidal cell output in juvenile mice of both Grin2a+/- and Grin2a-/- mice. These alterations in somatic spiking are not due to global upregulation of most Grin genes (including Grin2b). Deeper evaluation of the developing CA1 circuit led us to uncover age- and Grin2a gene dosing-dependent transient delays in the electrophysiological maturation programs of parvalbumin (PV) interneurons. We report that Grin2a+/+ mice reach PV cell electrophysiological maturation between the neonatal and juvenile neurodevelopmental timepoints, with Grin2a+/- mice not reaching PV cell electrophysiological maturation until preadolescence, and Grin2a-/- mice not reaching PV cell electrophysiological maturation until adulthood. Overall, these data may represent a molecular mechanism describing the transient nature of seizure susceptibility in disease-associated null GRIN2A patients.
Asunto(s)
Calcio , Parvalbúminas , Receptores de N-Metil-D-Aspartato , Animales , Ratones , Hipocampo , Interneuronas , Parvalbúminas/genética , Convulsiones , Receptores de N-Metil-D-Aspartato/genéticaRESUMEN
Eastern equine encephalitis virus (EEEV) is a relatively little-studied alphavirus that can cause devastating viral encephalitis, potentially leading to severe neurological sequelae or death. Although case numbers have historically been low, outbreaks have been increasing in frequency and scale since the 2000 s. It is critical to investigate EEEV evolutionary patterns, especially within human hosts, to understand patterns of emergence, host adaptation, and within-host evolution. To this end, we obtained formalin-fixed paraffin-embedded tissue blocks from discrete brain regions from five contemporary (2004-2020) patients from Massachusetts, confirmed the presence of EEEV RNA by in situ hybridization (ISH) staining, and sequenced viral genomes. We additionally sequenced RNA from scrapings of historical slides made from brain sections of a patient in the first documented EEE outbreak in humans in 1938. ISH staining revealed the presence of RNA in all contemporary samples, and quantification loosely correlated with the proportion of EEEV reads in samples. Consensus EEEV sequences were generated for all six patients, including the sample from 1938; phylogenetic analysis using additional publicly available sequences revealed clustering of each study sample with like sequences from a similar region, whereas an intrahost comparison of consensus sequences between discrete brain regions revealed minimal changes. Intrahost single nucleotide variant (iSNV) analysis of four samples from two patients revealed the presence of tightly compartmentalized, mostly nonsynonymous iSNVs. This study contributes critical primary human EEEV sequences, including a historic sequence as well as novel intrahost evolution findings, contributing substantially to our understanding of the natural history of EEEV infection in humans.
Asunto(s)
Virus de la Encefalitis Equina del Este , Encefalomielitis Equina , Humanos , Animales , Caballos/genética , Virus de la Encefalitis Equina del Este/genética , Filogenia , Encefalomielitis Equina/epidemiología , Massachusetts/epidemiología , ARN Viral/genéticaRESUMEN
OBJECTIVES: Viral infections of the central nervous system can be challenging to diagnose because of the wide range of causative agents and nonspecific histologic features. We sought to determine whether detection of double-stranded RNA (dsRNA), produced during active RNA and DNA viral infections, could be used to select cases for metagenomic next-generation sequencing (mNGS) from formalin-fixed, paraffin-embedded brain tissue. METHODS: Eight commercially available anti-dsRNA antibodies were optimized for immunohistochemistry (IHC) and the top antibody tested in a series of cases with confirmed viral infections (n = 34) and cases with inflammatory brain lesions of unclear etiology (n = 62). RESULTS: Among known positives, anti-dsRNA IHC produced a strong cytoplasmic or nuclear staining pattern for Powassan virus, West Nile virus, rabies virus, JC polyoma virus, and adenovirus while failing to detect Eastern equine encephalitis virus, Jamestown Canyon virus, or any herpesvirus. All the unknown cases were negative by anti-dsRNA IHC, while mNGS detected rare viral reads (0.3-1.3 reads per million total reads) in 2 cases (3%), with only 1 having potential clinical significance. CONCLUSIONS: Anti-dsRNA IHC can effectively identify a subset of clinically relevant viral infections but not all. The absence of staining should not exclude cases from mNGS if sufficient clinical and histologic suspicion exists.