Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Base de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Vis Exp ; (195)2023 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-37212583

RESUMEN

The human dental pulp represents a promising multipotent stem cell reservoir with pre-eminent regenerative competence that can be harvested from an extracted tooth. The neural crest-derived ecto-mesenchymal origin of dental pulp stem cells (DPSCs) bestows a high degree of plasticity that owes to its multifaceted benefits in tissue repair and regeneration. There are various practical ways of harvesting, maintaining, and proliferating adult stem cells being investigated for their use in regenerative medicine. In this work, we demonstrate the establishment of a primary mesenchymal stem cell culture from dental tissue by the explant culture method. The isolated cells were spindle-shaped and adhered to the plastic surface of the culture plate. The phenotypic characterization of these stem cells showed positive expression of the international society of cell therapy (ISCT)-recommended cell surface markers for MSC, such as CD90, CD73, and CD105. Further, negligible expression of hematopoietic (CD45) and endothelial markers (CD34), and less than 2% expression of HLA-DR markers, confirmed the homogeneity and purity of the DPSC cultures. We further illustrated their multipotency based on differentiation to adipogenic, osteogenic, and chondrogenic lineages. We also induced these cells to differentiate into hepatic-like and neuronal-like cells by adding corresponding stimulation media. This optimized protocol will aid in the cultivation of a highly expandable population of mesenchymal stem cells to be utilized in the laboratory or for preclinical studies. Similar protocols can be incorporated into clinical setups for practicing DPSC-based treatments.


Asunto(s)
Pulpa Dental , Células Madre Mesenquimatosas , Adulto , Humanos , Células Madre , Diferenciación Celular/fisiología , Células Madre Multipotentes , Células Cultivadas , Proliferación Celular/fisiología
2.
Int J Biochem Cell Biol ; 160: 106422, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37172928

RESUMEN

Mesenchymal stem/stromal cell (MSC) spheroids generated in a three-dimensional (3D) culture system serve as a surrogate model that maintain stem cell characteristics since these mimic the in vivo behavior of cells and tissue more closely. Our study involved a detailed characterization of the spheroids generated in ultra-low attachment flasks. The spheroids were evaluated and compared for their morphology, structural integrity, viability, proliferation, biocomponents, stem cell phenotype and differentiation abilities with monolayer culture derived cells (2D culture). The in-vivo therapeutic efficacy of DPSCs derived from 2D and 3D culture was also assessed by transplanting them in an animal model of the critical-sized calvarial defect. DPSCs formed compact and well-organized multicellular spheroids when cultured in ultra-low attachment condition with superior stemness, differentiation, and regenerative abilities than monolayer cells. They maintained lower proliferative state and showed marked difference in the cellular biocomponents such as lipid, amide and nucleic acid between DPSCs from 2D and 3D cultures. The scaffold-free 3D culture efficiently preserves DPSCs intrinsic properties and functionality by maintaining them in the state close to the native tissues. The scaffold free 3D culture methods allow easy collection of a large number of multicellular spheroids of DPSCs and therefore, this can be adopted as a feasible and efficient method of generating robust spheroids for various in-vitro and in-vivo therapeutic applications.


Asunto(s)
Pulpa Dental , Células Madre Mesenquimatosas , Animales , Células Cultivadas , Esferoides Celulares , Células del Estroma , Diferenciación Celular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA