Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
Plant Dis ; 2022 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-35668057

RESUMEN

Grape (Vitis vinefera L.) is a popular horticulture crop in Karnataka, India. A fungal pathogen caused panicle blight on panicles with immature fruit and severity increased subsequently in the grape growing regions of Devanahalli and Doddaballapur, Karnataka, between August and September 2019. The disease incidence varied from 15 to 18 percent in around 45 hectares of grape vineyards surveyed. The associated fungal pathogen was isolated on Potato Dextrose Agar (PDA) medium (HiMedia Laboratory, Mumbai, India) amended with Chloramphenicol. A total of 12 fungal isolates were obtained and identified based on morphology. Fungal cultures obtained from all the panicle blight affected samples were fluffy grayish to black with profuse, dense mycelium. Microscopic examinations revealed that the conidia ellipsoidal, two celled and hyaline when young, and developed dark brown pigments at maturity. Mature conidia measured 18.24±2.35 to 26.62±3.11 µm long and 10.32±1.08 to 12.57±1.82 µm width (n=30). The fungal pathogen was identified as a Lasiodiplodia sp. based on colony morphology and microscopic features. A total of three representative isolates L. theobromae (Vv12, Vv15, and Vv19) were selected for molecular identification based on ITS-rDNA, tub2 and EF-1α gene sequences and phylogenetic analysis. Genomic DNA was isolated from 12 day old cultures and ITS-rDNA, tub2 and EF-1α genes were amplified using ITS1/ITS4; Bt2a/Bt2b and EF1-728F/986R primer pairs, respectively (White et al., 1990; Glass and Donaldson, 1995, Carbone and Kohn, 1999). PCR amplicons were sequenced and the sequences were deposited in GenBank with the accession number ITS: MZ855866.1; MZ855867.1; MZ855868.1; tub2: MZ868708.1; MZ868709.1; MZ868710.1 and EF-1α: OM604750; OM604751; OM604752 respectively. The phylogeny was constructed based on combined ITS, EF-1α and the tub2 regions. Maximum Likelihood (ML) analysis was conducted and an ML tree was constructed with the substitution models (branch support was evaluated by 1,000 bootstrap replications). Combined phylogeny confirmed that the sequences shared a common clade with L. theobromae. Based on micro-morphological features and multi-locus sequence phylogeny, the associated fungal pathogen was identified as L. theobromae. There are no reports on the occurrence of L. theobromae causing panicle blight on grapes from India. Further, the pathogens association was confirmed through pathogenicity assay conducted on field harvested healthy bunches of grapes maintained under humid chamber. A total of 10 grape bunches were inoculated with a mycelial disc on the rachis of the panicle and incubated in a moist chamber for 5 days and control sets were inoculated with only agar plugs. The experiments were conducted in three replicates and repeated twice. A total of 21 panicle bunches developed typical rot symptoms 12-days post inoculation. The identity of the pathogen was confirmed based on micromorphology and cultural features after re-isolation (n=5), thus proving the Koch postulates and confirming the association of L. theobromae with panicle blight of grapes. Lasiodiplodia species are known to cause dieback, stem blight, leaf blights and spots on various crop plants. Mathur (1979) mentioned the occurrence of L. theobromae on grapes, however, no further details are available on the part associated, as well as morphological and molecular confirmation of L. theobromae. This is the first report of the L. theobromae causing panicle blight disease of grapes in India. Further, understanding the host range for L. theobromae and its variation will help to draw suitable disease management strategies.

2.
Plant Dis ; 2022 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-35134304

RESUMEN

Horse gram (Macrotyloma uniflorum (Lam.) Verdc., Fabaceae) is an important legume crop cultivated widely in the arid and semiarid regions. During a survey carried out in the Mysore district (Karnataka, India, October 2021), horse gram plants showed the symptoms of southern blight disease. Disease incidence ranged from 20-27% in the approximate 52 hectares of horse gram fields evaluated. The symptoms initiated as tan lesions and the developing mycelial threads colonized the infected root-stem interface, causing girdling; lesions on leaves enlarged and developed into distinct spots. Infected parts (leaves & stem) (n=30) were collected in poly bags and incubated in a moist chamber overnight, followed by surface sterilization of small segments of stem, leaf with 2% NaOCl, rinsed with sterile water (SW), and placed onto the potato dextrose agar (PDA, HiMedia Lab, Mumbai) supplemented with chloramphenicol (40 mg/L). The plates were incubated at room temperature (28 ± 2°C) for 5-7 days. The fungal colonies developed from the diseased segments were sub-cultured through hyphal tipping to fresh PDA plates and pure cultures were obtained. Fungal colonies with dense, aerial whitish-cottony mycelia with uniformly globoid sclerotia (0.52.9 mm) were observed after 1012 days of incubation. Sclerotia were white in the beginning and turned to brown later. The average number of sclerotia produced per plate ranged from 112 to 320 (n = 20). To determine the identity of the isolated fungal pathogen, ITS-rDNA was amplified and sequenced using ITS1/ITS4 (White et al. 1990) primers. The amplified PCR product was purified and sequenced directly. The ITS sequences (OM037658 & OM037659) shared 100% (630/643bp) sequence similarity to Athelia rolfsii (KY640622.1, AB075298). The phylogenetic tree (Neighbour-Joining method) constructed based on ITS-rDNA region confirmed that the sequences shared a common clade with reference sequence of A. rolfsii. Thus the identity was confirmed based on micromorphology and phylogenetic analysis. Pathogenicity tests were conducted on a total of 20 plants (5-6 weeks old) in greenhouse conditions (at 28 ± 2°C and 70% relative humidity) by inoculating with sclerotia from 15 days old cultures on stem and leaves and 14 plants were found infected after 5 days of post-inoculation, while uninoculated control plants remained healthy. Similarly, detached leaf assay (Mahadevakumar et al., 2018) was performed under in vitro conditions at 28 ± 2°C in a moist chamber and 28 out of 30 leaves showed the leaf spot symptoms after 3-5 days of inoculation. Uninoculated control leaves remained healthy. The identity of the fungus was confirmed by morphology and molecular analysis after re-isolation. The occurrence as a pathogen on horse gram has not been previously reported elsewhere. This is the first report of southern blight disease caused by A. rolfsii on horse gram from India. Early diagnosis of this leaf spot disease will help the farmers to adopt suitable management practices to avoid loss in production.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA