Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Plant Cell Rep ; 43(7): 189, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38960996

RESUMEN

KEY MESSAGE: QTL mapping combined with genome-wide association studies, revealed a potential candidate gene for  resistance to northern leaf blight in the tropical CATETO-related maize line YML226, providing a basis for marker-assisted selection of maize varieties Northern leaf blight (NLB) is a foliar disease that can cause severe yield losses in maize. Identifying and utilizing NLB-resistant genes is the most effective way to prevent and control this disease. In this study, five important inbred lines of maize were used as parental lines to construct a multi-parent population for the identification of NLB-resistant loci. QTL mapping and GWAS analysis revealed that QTL qtl_YML226_1, which had the largest phenotypic variance explanation (PVE) of 9.28%, and SNP 5-49,193,921 were co-located in the CATETO-related line YML226. This locus was associated with the candidate gene Zm00001d014471, which encodes a pentatricopeptide repeat (PPR) protein. In the coding region of Zm00001d014471, YML226 had more specific SNPs than the other parental lines. qRT-PCR showed that the relative expressions of Zm00001d014471 in inoculated and uninoculated leaves of YML226 were significantly higher, indicating that the expression of the candidate gene was correlated with NLB resistance. The analysis showed that the higher expression level in YML226 might be caused by SNP mutations. This study identified NLB resistance candidate loci and genes in the tropical maize inbred line YML226 derived from the CATETO germplasm, thereby providing a theoretical basis for using modern marker-assisted breeding techniques to select genetic resources resistant to NLB.


Asunto(s)
Mapeo Cromosómico , Resistencia a la Enfermedad , Estudio de Asociación del Genoma Completo , Enfermedades de las Plantas , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Zea mays , Zea mays/genética , Zea mays/microbiología , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Sitios de Carácter Cuantitativo/genética , Polimorfismo de Nucleótido Simple/genética , Genes de Plantas , Fenotipo , Hojas de la Planta/genética , Hojas de la Planta/microbiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
Plants (Basel) ; 13(10)2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38794480

RESUMEN

Common rust (CR), caused by Puccina sorghi, is a major foliar disease in maize that leads to quality deterioration and yield losses. To dissect the genetic architecture of CR resistance in maize, this study utilized the susceptible temperate inbred line Ye107 as the male parent crossed with three resistant tropical maize inbred lines (CML312, D39, and Y32) to generate 627 F7 recombinant inbred lines (RILs), with the aim of identifying maize disease-resistant loci and candidate genes for common rust. Phenotypic data showed good segregation between resistance and susceptibility, with varying degrees of resistance observed across different subpopulations. Significant genotype effects and genotype × environment interactions were observed, with heritability ranging from 85.7% to 92.2%. Linkage and genome-wide association analyses across the three environments identified 20 QTLs and 62 significant SNPs. Among these, seven major QTLs explained 66% of the phenotypic variance. Comparison with six SNPs repeatedly identified across different environments revealed overlap between qRUST3-3 and Snp-203,116,453, and Snp-204,202,469. Haplotype analysis indicated two different haplotypes for CR resistance for both the SNPs. Based on LD decay plots, three co-located candidate genes, Zm00001d043536, Zm00001d043566, and Zm00001d043569, were identified within 20 kb upstream and downstream of these two SNPs. Zm00001d043536 regulates hormone regulation, Zm00001d043566 controls stomatal opening and closure, related to trichome, and Zm00001d043569 is associated with plant disease immune responses. Additionally, we performed candidate gene screening for five additional SNPs that were repeatedly detected across different environments, resulting in the identification of five candidate genes. These findings contribute to the development of genetic resources for common rust resistance in maize breeding programs.

3.
Theor Appl Genet ; 137(4): 94, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38578443

RESUMEN

KEY MESSAGE: This study revealed the identification of a novel gene, Zm00001d042906, that regulates maize ear length by modulating lignin synthesis and reported a molecular marker for selecting maize lines with elongated ears. Maize ear length has garnered considerable attention due to its high correlation with yield. In this study, six maize inbred lines of significant importance in maize breeding were used as parents. The temperate maize inbred line Ye107, characterized by a short ear, was crossed with five tropical or subtropical inbred lines featuring longer ears, creating a multi-parent population displaying significant variations in ear length. Through genome-wide association studies and mutation analysis, the A/G variation at SNP_183573532 on chromosome 3 was identified as an effective site for discriminating long-ear maize. Furthermore, the associated gene Zm00001d042906 was found to correlate with maize ear length. Zm00001d042906 was functionally annotated as a laccase (Lac4), which showed activity and influenced lignin synthesis in the midsection cells of the cob, thereby regulating maize ear length. This study further reports a novel molecular marker and a new gene that can assist maize breeding programs in selecting varieties with elongated ears.


Asunto(s)
Lacasa , Zea mays , Zea mays/genética , Lacasa/genética , Estudio de Asociación del Genoma Completo , Lignina , Fitomejoramiento
4.
Plants (Basel) ; 13(7)2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38611561

RESUMEN

A comprehensive study on maize flowering traits, focusing on the regulation of flowering time and the elucidation of molecular mechanisms underlying the genes controlling flowering, holds the potential to significantly enhance our understanding of the associated regulatory gene network. In this study, three tropical maize inbreds, CML384, CML171, and CML444, were used, along with a temperate maize variety, Shen137, as parental lines to cross with Ye107. The resulting F1s underwent seven consecutive generations of self-pollination through the single-seed descent (SSD) method to develop a multiparent population. To investigate the regulation of maize flowering time-related traits and to identify loci and candidate genes, a genome-wide association study (GWAS) was conducted. GWAS analysis identified 556 SNPs and 12 candidate genes that were significantly associated with flowering time-related traits. Additionally, an analysis of the effect of the estimated breeding values of the subpopulations on flowering time was conducted to further validate the findings of the present study. Collectively, this study offers valuable insights into novel candidate genes, contributing to an improved understanding of maize flowering time-related traits. This information holds practical significance for future maize breeding programs aimed at developing high-yielding hybrids.

5.
Int J Mol Sci ; 25(6)2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38542350

RESUMEN

Kernel row number (KRN) is a crucial trait in maize that directly influences yield; hence, understanding the mechanisms underlying KRN is vital for the development of high-yielding inbred lines and hybrids. We crossed four excellent panicle inbred lines (CML312, CML444, YML46, and YML32) with Ye107, and after eight generations of selfing, a multi-parent population was developed comprising four subpopulations, each consisting of 200 lines. KRN was accessed in five environments in Yunnan province over three years (2019, 2021, and 2022). The objectives of this study were to (1) identify quantitative trait loci and single nucleotide polymorphisms associated with KRN through linkage and genome-wide association analyses using high-quality genotypic data, (2) identify candidate genes regulating KRN by identifying co-localized QTLs and SNPs, and (3) explore the pathways involved in KRN formation and identify key candidate genes through Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. Our study successfully identified 277 significant Quantitative trait locus (QTLs) and 53 significant Single Nucleotide Polymorphism (SNPs) related to KRN. Based on gene expression, GO, and KEGG analyses, SNP-177304649, SNP-150393177, SNP-135283055, SNP-138554600, and SNP-120370778, which were highly likely to be associated with KRN, were identified. Seven novel candidate genes at this locus (Zm00001d022420, Zm00001d022421, Zm00001d016202, Zm00001d050984, Zm00001d050985, Zm00001d016000, and Zm00014a012929) are associated with KRN. Among these, Zm00014a012929 was identified using the reference genome Mo17. The remaining six genes were identified using the reference genome B73. To our knowledge, this is the first report on the association of these genes with KRN in maize. These findings provide a theoretical foundation and valuable insights into the genetic mechanisms underlying maize KRN and the development of high-yielding hybrids through heterosis.


Asunto(s)
Estudio de Asociación del Genoma Completo , Zea mays , Mapeo Cromosómico , Zea mays/genética , Ligamiento Genético , China , Fenotipo , Polimorfismo de Nucleótido Simple
6.
Plants (Basel) ; 13(3)2024 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-38337988

RESUMEN

Banded leaf and sheath blight (BLSB) in maize is a soil-borne fungal disease caused by Rhizoctonia solani Kühn, resulting in significant yield losses. Investigating the genes responsible for regulating resistance to BLSB is crucial for yield enhancement. In this study, a multiparent maize population was developed, comprising two recombinant inbred line (RIL) populations totaling 442 F8RILs. The populations were generated by crossing two tropical inbred lines, CML444 and NK40-1, known for their BLSB resistance, as female parents, with the high-yielding but BLSB-susceptible inbred line Ye107 serving as the common male parent. Subsequently, we utilized 562,212 high-quality single nucleotide polymorphisms (SNPs) generated through genotyping-by-sequencing (GBS) for a comprehensive genome-wide association study (GWAS) aimed at identifying genes responsible for BLSB resistance. The objectives of this study were to (1) identify SNPs associated with BLSB resistance through genome-wide association analyses, (2) explore candidate genes regulating BLSB resistance in maize, and (3) investigate pathways involved in BLSB resistance and discover key candidate genes through Gene Ontology (GO) analysis. The GWAS analysis revealed nineteen SNPs significantly associated with BLSB that were consistently identified across four environments in the GWAS, with phenotypic variation explained (PVE) ranging from 2.48% to 11.71%. Screening a 40 kb region upstream and downstream of the significant SNPs revealed several potential candidate genes. By integrating information from maize GDB and the NCBI, we identified five novel candidate genes, namely, Zm00001d009723, Zm00001d009975, Zm00001d009566, Zm00001d009567, located on chromosome 8, and Zm00001d026376, on chromosome 10, related to BLSB resistance. These candidate genes exhibit association with various aspects, including maize cell membrane proteins and cell immune proteins, as well as connections to cell metabolism, transport, transcriptional regulation, and structural proteins. These proteins and biochemical processes play crucial roles in maize defense against BLSB. When Rhizoctonia solani invades maize plants, it induces the expression of genes encoding specific proteins and regulates corresponding metabolic pathways to thwart the invasion of this fungus. The present study significantly contributes to our understanding of the genetic basis of BLSB resistance in maize, offering valuable insights into novel candidate genes that could be instrumental in future breeding efforts to develop maize varieties with enhanced BLSB resistance.

7.
Int J Mol Sci ; 25(3)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38339032

RESUMEN

Tassel weight (TW) is a crucial agronomic trait that significantly affects pollen supply and grain yield development in maize breeding. To improve maize yield and develop new varieties, a comprehensive understanding of the genetic mechanisms underlying tassel weight is essential. In this study, tropical maize inbred lines, namely CML312, CML373, CML444, and YML46, were selected as female parents and crossed with the elite maize inbred line Ye107, which served as the common male parent, to develop a multi-parent population comprising four F8 recombinant inbred line (RIL) subpopulations. Using 6616 high-quality single nucleotide polymorphism (SNP) markers, we conducted genome-wide association analysis (GWAS) and genomic selection (GS) on 642 F8 RILs in four subpopulations across three different environments. Through GWAS, we identified 16 SNPs that were significantly associated with TW, encompassing two stable loci expressed across multiple environments. Furthermore, within the candidate regions of these SNPs, we discovered four novel candidate genes related to TW, namely Zm00001d044362, Zm00001d011048, Zm00001d011049, and Zm00001d031173 distributed on chromosomes 1, 3, and 8, which have not been previously reported. These genes are involved in processes such as signal transduction, growth and development, protein splicing, and pollen development, all of which play crucial roles in inflorescence meristem development, directly affecting TW. The co-localized SNP, S8_137379725, on chromosome 8 was situated within a 16.569 kb long terminal repeat retrotransposon (LTR-RT), located 22.819 kb upstream and 26.428 kb downstream of the candidate genes (Zm00001d011048 and Zm00001d011049). When comparing three distinct GS models, the BayesB model demonstrated the highest accuracy in predicting TW. This study establishes the theoretical foundation for future research into the genetic mechanisms underlying maize TW and the efficient breeding of high-yielding varieties with desired tassel weight through GS.


Asunto(s)
Estudio de Asociación del Genoma Completo , Inflorescencia , Inflorescencia/genética , Sitios de Carácter Cuantitativo , Zea mays/genética , Fitomejoramiento , Fenotipo , Polimorfismo de Nucleótido Simple
8.
BMC Plant Biol ; 24(1): 10, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38163896

RESUMEN

BACKGROUND: Understanding the genetic mechanisms underlying gray leaf spot (GLS) resistance in maize is crucial for breeding GLS-resistant inbred lines and commercial hybrids. Genome-wide association studies (GWAS) and gene functional annotation are valuable methods for identifying potential SNPs (single nucleotide polymorphism) and candidate genes associated with GLS resistance in maize. RESULTS: In this study, a total of 757 lines from five recombinant inbred line (RIL) populations of maize at the F7 generation were used to construct an association mapping panel. SNPs obtained through genotyping-by-sequencing (GBS) were used to perform GWAS for GLS resistance using a linear mixture model in GEMMA. Candidate gene screening was performed by analyzing the 10 kb region upstream and downstream of the significantly associated SNPs linked to GLS resistance. Through GWAS analysis of multi-location phenotypic data, we identified ten candidate genes that were consistently detected in two locations or from one location along with best linear unbiased estimates (BLUE). One of these candidate genes, Zm00001d003257 that might impact GLS resistance by regulating gibberellin content, was further identified through haplotype-based association analysis, candidate gene expression analysis, and previous reports. CONCLUSIONS: The discovery of the novel candidate gene provides valuable genomic resources for elucidating the genetic mechanisms underlying GLS resistance in maize. Additionally, these findings will contribute to the development of new genetic resources by utilizing molecular markers to facilitate the genetic improvement and breeding of maize for GLS resistance.


Asunto(s)
Estudio de Asociación del Genoma Completo , Sitios de Carácter Cuantitativo , Zea mays/genética , Enfermedades de las Plantas/genética , Resistencia a la Enfermedad/genética , Fitomejoramiento , Polimorfismo de Nucleótido Simple/genética , Fenotipo
9.
J Agric Food Chem ; 71(16): 6499-6510, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37061924

RESUMEN

Alternaria brassicicola (Ab) can cause a major yield and quality-limiting disease of Brassica oleracea called black spot, and the genetic resources conferring complete resistance against Ab have not been identified to date. Here, comparative transcriptome and targeted metabolome analysis were performed utilizing a newly identified resistant (R) line and a broccoli susceptible (S) line at 6, 24, and 72 h post-inoculation (hpi). Kyoto encyclopedia of genes and genomes pathway enrichment and the weighted gene co-expression network analyses showed that the phenylpropanoid pathway regulates the resistance to Ab in broccoli. One metabolite, cinnamic acid, was significantly upregulated in the Ab_inoculated R line compared with the mock treatment but no significant difference in the S line, indicating that the cinnamic acid may cause the resistance difference between R and S lines. Our results also revealed that three indolic glucosinolates of I3G, 4MI3G, and 1MI3G were significantly increased in the Ab_inoculated R line compared with the mock treatment, and some related genes were differentially expressed between the R and S lines. These results provided new insights into the mechanism of Ab defense in B. oleracea and have laid a theoretical foundation for effectively utilizing resistant germplasm resources in broccoli breeding.


Asunto(s)
Brassica , Brassica/genética , Glucosinolatos , Metaboloma , Fitomejoramiento , Transcriptoma
10.
Int J Mol Sci ; 23(16)2022 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-36012543

RESUMEN

Brassica oleracea is an agronomically important species of the Brassicaceae family, including several nutrient-rich vegetables grown and consumed across the continents. But its sustainability is heavily constrained by a range of destructive pathogens, among which, clubroot disease, caused by a biotrophic protist Plasmodiophora brassicae, has caused significant yield and economic losses worldwide, thereby threatening global food security. To counter the pathogen attack, it demands a better understanding of the complex phenomenon of Brassica-P. brassicae pathosystem at the physiological, biochemical, molecular, and cellular levels. In recent years, multiple omics technologies with high-throughput techniques have emerged as successful in elucidating the responses to biotic and abiotic stresses. In Brassica spp., omics technologies such as genomics, transcriptomics, ncRNAomics, proteomics, and metabolomics are well documented, allowing us to gain insights into the dynamic changes that transpired during host-pathogen interactions at a deeper level. So, it is critical that we must review the recent advances in omics approaches and discuss how the current knowledge in multi-omics technologies has been able to breed high-quality clubroot-resistant B. oleracea. This review highlights the recent advances made in utilizing various omics approaches to understand the host resistance mechanisms adopted by Brassica crops in response to the P. brassicae attack. Finally, we have discussed the bottlenecks and the way forward to overcome the persisting knowledge gaps in delivering solutions to breed clubroot-resistant Brassica crops in a holistic, targeted, and precise way.


Asunto(s)
Brassica , Plasmodiophorida , Brassica/genética , Productos Agrícolas , Fitomejoramiento , Enfermedades de las Plantas/genética , Plasmodiophorida/fisiología
11.
Genome ; 65(3): 123-136, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34818083

RESUMEN

Fusarium wilt, caused by Fusarium oxysporum f. sp. ricini, is the most destructive disease in castor. Host plant resistance is the best strategy for the management of wilt. Identification of molecular markers linked to wilt resistance will enhance the efficiency and effectiveness of breeding for wilt resistance. In the present study, genomic regions linked to wilt resistance were mapped using a bi-parental population of 185 F6-RILs and a genetically diverse panel of 300 germplasm accessions. Quantitative trait loci (QTL) analysis performed using a linkage map consisting of 1090 SNP markers identified a major QTL on chromosome 7 with an LOD score of 18.7, which explained 44% of the phenotypic variance. The association mapping performed using genotypic data from 3465 SNP loci revealed 69 significant associations (p < 1 × 10-4) for wilt resistance. The phenotypic variance explained by the individual SNPs ranged from 0.063 to 0.210. The QTL detected in the bi-parental mapping population was not identified in the association analysis. Thus, the results of this study indicate the possibility of vast gene diversity for Fusarium wilt resistance in castor.


Asunto(s)
Fusarium , Resistencia a la Enfermedad/genética , Ligamiento Genético , Genómica , Enfermedades de las Plantas/genética
12.
Front Plant Sci ; 12: 742553, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34938304

RESUMEN

Brassica oleracea is one of the most important species of the Brassicaceae family encompassing several economically important vegetables produced and consumed worldwide. But its sustainability is challenged by a range of pathogens, among which black rot, caused by Xanthomonas campestris pv. campestris (Xcc), is the most serious and destructive seed borne bacterial disease, causing huge yield losses. Host-plant resistance could act as the most effective and efficient solution to curb black rot disease for sustainable production of B. oleracea. Recently, 'omics' technologies have emerged as promising tools to understand the host-pathogen interactions, thereby gaining a deeper insight into the resistance mechanisms. In this review, we have summarized the recent achievements made in the emerging omics technologies to tackle the black rot challenge in B. oleracea. With an integrated approach of the omics technologies such as genomics, proteomics, transcriptomics, and metabolomics, it would allow better understanding of the complex molecular mechanisms underlying black rot resistance. Due to the availability of sequencing data, genomics and transcriptomics have progressed as expected for black rot resistance, however, other omics approaches like proteomics and metabolomics are lagging behind, necessitating a holistic and targeted approach to address the complex questions of Xcc-Brassica interactions. Genomic studies revealed that the black rot resistance is a complex trait and is mostly controlled by quantitative trait locus (QTL) with minor effects. Transcriptomic analysis divulged the genes related to photosynthesis, glucosinolate biosynthesis and catabolism, phenylpropanoid biosynthesis pathway, ROS scavenging, calcium signalling, hormonal synthesis and signalling pathway are being differentially expressed upon Xcc infection. Comparative proteomic analysis in relation to susceptible and/or resistance interactions with Xcc identified the involvement of proteins related to photosynthesis, protein biosynthesis, processing and degradation, energy metabolism, innate immunity, redox homeostasis, and defence response and signalling pathways in Xcc-Brassica interaction. Specifically, most of the studies focused on the regulation of the photosynthesis-related proteins as a resistance response in both early and later stages of infection. Metabolomic studies suggested that glucosinolates (GSLs), especially aliphatic and indolic GSLs, its subsequent hydrolysis products, and defensive metabolites synthesized by jasmonic acid (JA)-mediated phenylpropanoid biosynthesis pathway are involved in disease resistance mechanisms against Xcc in Brassica species. Multi-omics analysis showed that JA signalling pathway is regulating resistance against hemibiotrophic pathogen like Xcc. So, the bonhomie between omics technologies and plant breeding is going to trigger major breakthroughs in the field of crop improvement by developing superior cultivars with broad-spectrum resistance. If multi-omics tools are implemented at the right scale, we may be able to achieve the maximum benefits from the minimum. In this review, we have also discussed the challenges, future prospects, and the way forward in the application of omics technologies to accelerate the breeding of B. oleracea for disease resistance. A deeper insight about the current knowledge on omics can offer promising results in the breeding of high-quality disease-resistant crops.

13.
Front Plant Sci ; 12: 667757, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34354719

RESUMEN

Cauliflower (Brassica oleracea var. botrytis L.) is one of the important, nutritious and healthy vegetable crops grown and consumed worldwide. But its production is constrained by several destructive fungal diseases and most importantly, downy mildew leading to severe yield and quality losses. For sustainable cauliflower production, developing resistant varieties/hybrids with durable resistance against broad-spectrum of pathogens is the best strategy for a long term and reliable solution. Identification of novel resistant resources, knowledge of the genetics of resistance, mapping and cloning of resistance QTLs and identification of candidate genes would facilitate molecular breeding for disease resistance in cauliflower. Advent of next-generation sequencing technologies (NGS) and publishing of draft genome sequence of cauliflower has opened the flood gate for new possibilities to develop enormous amount of genomic resources leading to mapping and cloning of resistance QTLs. In cauliflower, several molecular breeding approaches such as QTL mapping, marker-assisted backcrossing, gene pyramiding have been carried out to develop new resistant cultivars. Marker-assisted selection (MAS) would be beneficial in improving the precision in the selection of improved cultivars against multiple pathogens. This comprehensive review emphasizes the fascinating recent advances made in the application of molecular breeding approach for resistance against an important pathogen; Downy Mildew (Hyaloperonospora parasitica) affecting cauliflower and Brassica oleracea crops and highlights the QTLs identified imparting resistance against this pathogen. We have also emphasized the critical research areas as future perspectives to bridge the gap between availability of genomic resources and its utility in identifying resistance genes/QTLs to breed downy mildew resistant cultivars. Additionally, we have also discussed the challenges and the way forward to realize the full potential of molecular breeding for downy mildew resistance by integrating marker technology with conventional breeding in the post-genomics era. All this information will undoubtedly provide new insights to the researchers in formulating future breeding strategies in cauliflower to develop durable resistant cultivars against the major pathogens in general and downy mildew in particular.

14.
Front Plant Sci ; 12: 655254, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34149754

RESUMEN

Broccoli (Brassica oleracea var. italica) is one of the most important and nutritious vegetables widely cultivated in China. In the recent four decades, several improved varieties were bred and developed by Chinese breeders. However, the efforts for improvement of broccoli are hindered by limited information of genetic diversity and genetic relatedness contained within the available germplasms. This study evaluated the genetic diversity, genetic relationship, population structure, and fingerprinting of 372 accessions of broccoli representing most of the variability of broccoli in China. Millions of SNPs were identified by whole-genome sequencing of 23 representative broccoli genotypes. Through several stringent selection criteria, a total of 1,167 SNPs were selected to characterize genetic diversity and population structure. Of these markers, 1,067 SNPs were genotyped by target sequencing (GBTS), and 100 SNPs were genotyped by kompetitive allele specific PCR (KASP) assay. The average polymorphism information content (PIC) and expected heterozygosity (gene diversity) values were 0.33 and 0.42, respectively. Diversity analysis revealed the prevalence of low to moderate genetic diversity in the broccoli accessions indicating a narrow genetic base. Phylogenetic and principal component analyses revealed that the 372 accessions could be clustered into two main groups but with weak groupings. STRUCTURE analysis also suggested the presence of two subpopulations with weak genetic structure. Analysis of molecular variance (AMOVA) identified 13% variance among populations and 87% within populations revealing very low population differentiation, which could be attributed to massive gene flow and the reproductive biology of the crop. Based on high resolving power, a set of 28 KASP markers was chosen for DNA fingerprinting of the broccoli accessions for seed authentication and varietal identification. To the best of our knowledge, this is the first comprehensive study to measure diversity and population structure of a large collection of broccoli in China and also the first application of GBTS and KASP techniques in genetic characterization of broccoli. This work broadens the understanding of diversity, phylogeny, and population structure of a large collection of broccoli, which may enhance future breeding efforts to achieve higher productivity.

15.
Sci Rep ; 9(1): 3003, 2019 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-30816245

RESUMEN

Castor is a commercially important oilseed crop that provides raw materials for several industries. Currently, the availability of genomic resources for castor is very limited. In this study, genome-wide SNPs were discovered in castor via whole-genome sequencing of 14 diverse lines to an average of 34X coverage. A total of 2,179,759 putative SNPs were detected, and a genotyping array was designed with 6,000 high-quality SNPs representing 2,492 scaffolds of the draft castor genome (87.5% genome coverage). The array was validated by genotyping a panel of 314 inbred castor lines, which resulted in 5,025 scorable SNPs with a high call rate (98%) and reproducibility (100%). Using this array, a consensus linkage map consisting of 1,978 SNP loci was constructed with an average inter-marker distance of 0.55 cM. The genome-wide SNP data, the genotyping array and the dense linkage map are valuable genomic tools for promoting high-throughput genomic research and molecular breeding in castor.


Asunto(s)
Ligamiento Genético , Estudio de Asociación del Genoma Completo/métodos , Técnicas de Genotipaje/métodos , Polimorfismo de Nucleótido Simple , Ricinus communis/genética , Genoma de Planta , Estudio de Asociación del Genoma Completo/normas , Técnicas de Genotipaje/normas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA