Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Base de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Front Cell Neurosci ; 18: 1449063, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39165834

RESUMEN

Currently, stem cells technology is an effective tool in regenerative medicine. Cell therapy is based on the use of stem/progenitor cells to repair or replace damaged tissues or organs. This approach can be used to treat various diseases, such as cardiovascular, neurological diseases, and injuries of various origins. The mechanisms of cell therapy therapeutic action are based on the integration of the graft into the damaged tissue (replacement effect) and the ability of cells to secrete biologically active molecules such as cytokines, growth factors and other signaling molecules that promote regeneration (paracrine effect). However, cell transplantation has a number of limitations due to cell transportation complexity and immune rejection. A potentially more effective therapy is using only paracrine factors released by stem cells. Secreted factors can positively affect the damaged tissue: promote forming new blood vessels, stimulate cell proliferation, and reduce inflammation and apoptosis. In this work, we have studied the anti-inflammatory and neuroprotective effects of proteins with a molecular weight below 100 kDa secreted by glial progenitor cells obtained from human induced pluripotent stem cells. Proteins secreted by glial progenitor cells exerted anti-inflammatory effects in a primary glial culture model of LPS-induced inflammation by reducing nitric oxide (NO) production through inhibition of inducible NO synthase (iNOS). At the same time, added secreted proteins neutralized the effect of glutamate, increasing the number of viable neurons to control values. This effect is a result of decreased level of intracellular calcium, which, at elevated concentrations, triggers apoptotic death of neurons. In addition, secreted proteins reduce mitochondrial depolarization caused by glutamate excitotoxicity and help maintain higher NADH levels. This therapy can be successfully introduced into clinical practice after additional preclinical studies, increasing the effectiveness of rehabilitation of patients with neurological diseases.

2.
Sci Rep ; 13(1): 20388, 2023 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-37989873

RESUMEN

Stem cell-based therapeutic approaches for neurological disorders are widely studied. Paracrine factors secreted by stem cells in vitro and delivered intranasally might allow bypassing the disadvantages associated with a surgical cell delivery procedure with likely immune rejection of a transplant. In this study, we investigated the therapeutic effect of the extracellular vesicles secreted by glial progenitor cells (GPC-EV) derived from human induced pluripotent stem cell in a traumatic brain injury model. Intranasal administration of GPC-EV to Wistar rats for 6 days improved sensorimotor functions assessed over a 14-day observation period. Beside, deep sequencing of microRNA transcriptome of GPC-EV was estimate, and was revealed 203 microRNA species that might be implicated in prevention of various brain pathologies. Modulation of microRNA pools might contribute to the observed decrease in the number of astrocytes that inhibit neurorecovery processes while enhancing neuroplasticity by decreasing phosphorylated Tau forms, preventing inflammation and apoptosis associated with secondary damage to brain tissue. The course of GPC-EV administration was promoted the increasing protein levels of NF-κB in studied areas of the rat brain, indicating NF-κB dependent mechanisms as a plausible route of neuroprotection within the damaged area. This investigation showed that GPC-EV may be representing a therapeutic approach in traumatic brain injury, though its translation into the clinic would require an additional research and development.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Vesículas Extracelulares , Células Madre Pluripotentes Inducidas , MicroARNs , Fármacos Neuroprotectores , Humanos , Ratas , Animales , MicroARNs/metabolismo , Fármacos Neuroprotectores/uso terapéutico , FN-kappa B/metabolismo , Ratas Wistar , Células Madre Pluripotentes Inducidas/metabolismo , Encéfalo/metabolismo , Lesiones Traumáticas del Encéfalo/terapia , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Vesículas Extracelulares/metabolismo , Neuroglía/metabolismo
3.
Int J Mol Sci ; 24(15)2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37569717

RESUMEN

Traumatic brain injuries account for 30-50% of all physical traumas and are the most common pathological diseases of the brain. Mechanical damage of brain tissue leads to the disruption of the blood-brain barrier and the massive death of neuronal, glial, and endothelial cells. These events trigger a neuroinflammatory response and neurodegenerative processes locally and in distant parts of the brain and promote cognitive impairment. Effective instruments to restore neural tissue in traumatic brain injury are lacking. Glial cells are the main auxiliary cells of the nervous system, supporting homeostasis and ensuring the protection of neurons through contact and paracrine mechanisms. The glial cells' secretome may be considered as a means to support the regeneration of nervous tissue. Consequently, this study focused on the therapeutic efficiency of composite proteins with a molecular weight of 5-100 kDa secreted by glial progenitor cells in a rat model of traumatic brain injury. The characterization of proteins below 100 kDa secreted by glial progenitor cells was evaluated by proteomic analysis. Therapeutic effects were assessed by neurological outcomes, measurement of the damage volume by MRI, and an evaluation of the neurodegenerative, apoptotic, and inflammation markers in different areas of the brain. Intranasal infusions of the composite protein product facilitated the functional recovery of the experimental animals by decreasing the inflammation and apoptotic processes, preventing neurodegenerative processes by reducing the amounts of phosphorylated Tau isoforms Ser396 and Thr205. Consistently, our findings support the further consideration of glial secretomes for clinical use in TBI, notably in such aspects as dose-dependent effects and standardization.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Células Endoteliales , Ratas , Animales , Ratas Sprague-Dawley , Células Endoteliales/metabolismo , Proteómica , Lesiones Traumáticas del Encéfalo/metabolismo , Neuroglía/metabolismo , Inflamación , Células Madre/metabolismo
4.
Brain Res ; 1805: 148290, 2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-36804486

RESUMEN

Methylene blue (MB) can be used as a multidirectional neuroprotector to stop the development of multiple cascades of neuron damage during neurodegenerative processes. This study assesses a protective effect of MB, using an experimental simulation of sporadic Alzheimer's disease by intracerebroventricular administration of streptozotocin (STZ) in rats. It was found that a STZ-induced impairment of memory can be partially mitigated with intravenous injections of MB after the administration of STZ. The treatment of animals with MB prevented the STZ-induced increase in the number and density of microglial and GFAP-positive cells in the brain cortex. In addition, it was shown that the expression of the LC3B protein, an indicator of autophagy, increases in the hippocampus of animals treated with STZ. In the hippocampus of animals treated with MB, an increase in the expression of the LC3B protein was prevented. Using the Griess reaction assay and immunocytochemical study was found that MB reduces lipopolysaccharide-induced NO-production and the expression of iNOS in cultured neurons. In conclusion, our data demonstrate that MB has neuroprotective and anti-inflammatory effects and is able to prevent autophagy. These effects have important therapeutic implications, so MB could potentially play a role in the treatment of neurodegenerative processes.


Asunto(s)
Enfermedad de Alzheimer , Fármacos Neuroprotectores , Ratas , Animales , Estreptozocina/farmacología , Fármacos Neuroprotectores/farmacología , Enfermedad de Alzheimer/metabolismo , Azul de Metileno , Hipocampo/metabolismo , Modelos Animales de Enfermedad , Aprendizaje por Laberinto
5.
Biol Trace Elem Res ; 201(2): 856-864, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35665882

RESUMEN

Zn2+ is known to be important for the normal brain functions. Disruption of zinc homeostasis and zinc-induced neurotoxicity has been shown to play a role in the development of neurodegenerative diseases. In this work, we investigated the effect of extracellular alkalosis on the zinc ions neurotoxicity in the cultured rat cerebellar granule neurons. Zinc chloride (0.03-0.06 mM, 24 h) added to the culture medium of rat cerebellar granule neurons caused the dose-dependent death of these cells. According to ultrastructural morphological features, the process of cell death could be attributed to necrosis, since it was accompanied by swelling of intracellular organelles and disruption of cell membranes against the background of relatively intact nuclear membranes. Neuronal death was associated with an increase in the level of intracellular free zinc. The toxic effect of zinc ions was significantly decreased when ionotropic glutamate NMDA-receptors were blocked by MK-801 or when the extracellular pH was increased from 7.3 to 7.8, due to a decrease in the zinc overload of the cytoplasm of these cells. The presented results demonstrate that NMDA channels are one of the Zn ion entry pathways in the cultured cerebellar granule neurons. Extracellular alkalosis reduces the zinc overload of the cytoplasm and, consequently, promotes the survival of neurons. Probably, zinc's neurotoxicity is inextricably linked with changes in the intracellular concentration of protons.


Asunto(s)
Cerebelo , N-Metilaspartato , Ratas , Animales , N-Metilaspartato/metabolismo , N-Metilaspartato/farmacología , Zinc/farmacología , Zinc/metabolismo , Células Cultivadas , Neuronas , Iones/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA