Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Base de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Biochim Biophys Acta ; 1860(7): 1541-50, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27017946

RESUMEN

The catechin, epigallocatechin gallate (eGCG), found in green tea, has inhibitory activity against a number of protein toxins and was investigated in relation to its impact upon ricin toxin (RT) in vitro. The IC(50) for RT was 0.08±0.004 ng/mL whereas the IC(50) for RT+100 µM eGCG was 3.02±0.572 ng/mL, indicating that eGCG mediated a significant (p<0.0001) reduction in ricin toxicity. This experiment was repeated in the human macrophage cell line THP-1 and IC(50) values were obtained for RT (0.54±0.024 ng/mL) and RT+100 µM eGCG (0.68±0.235 ng/mL) again using 100 µM eGCG and was significant (p=0.0013). The documented reduction in ricin toxicity mediated by eGCG was found to be eGCG concentration dependent, with 80 and 100 µg/mL (i.e. 178 and 223 µM respectively) of eGCG mediating a significant (p=0.0472 and 0.0232) reduction in ricin toxicity at 20 and 4 ng/ml of RT in Vero and THP-1 cells (respectively). When viability was measured in THP-1 cells by propidium iodide exclusion (as opposed to the MTT assays used previously) 10 ng/mL and 5 ng/mL of RT was used. The addition of 1000 µM and 100 µM eGCG mediated a significant (p=0.0015 and <0.0001 respectively) reduction in ricin toxicity relative to an identical concentration of ricin with 1 µg eGCG. Further, eGCG (100 µM) was found to reduce the binding of RT B chain to lactose-conjugated Sepharose as well as significantly (p=0.0039) reduce the uptake of RT B chain in Vero cells. This data suggests that eGCG may provide a starting point to refine biocompatible substances that can reduce the lethality of ricin.


Asunto(s)
Antídotos/farmacología , Catequina/análogos & derivados , Macrófagos/efectos de los fármacos , Ricina/antagonistas & inhibidores , Animales , Transporte Biológico , Catequina/farmacología , Supervivencia Celular/efectos de los fármacos , Chlorocebus aethiops , Clonación Molecular , Relación Dosis-Respuesta a Droga , Humanos , Concentración 50 Inhibidora , Macrófagos/metabolismo , Unión Proteica , Ricina/genética , Ricina/metabolismo , Transfección , Células Vero
2.
J Control Release ; 220(Pt A): 316-328, 2015 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-26546271

RESUMEN

Inefficient cytosolic delivery and vector toxicity contribute to the limited use of antisense oligonucleotides (ASOs) and siRNA as therapeutics. As anthrax toxin (Atx) accesses the cytosol, the purpose of this study was to evaluate the potential of disarmed Atx to deliver either ASOs or siRNA. We hypothesized that this delivery strategy would facilitate improved transfection efficiency while eliminating the toxicity seen for many vectors due to membrane destabilization. Atx complex formation with ASOs or siRNA was achieved via the in-frame fusion of either Saccharomyces cerevisiae GAL4 or Homo sapien sapien PKR (respectively) to a truncation of Atx lethal factor (LFn), which were used with Atx protective antigen (PA). Western immunoblotting confirmed the production of: LFN-GAL4, LFn-PKR and PA which were detected at ~45.9 kDa, ~37 kDa, and ~83 kDa respectively and small angle neutron scattering confirmed the ability of PA to form an annular structure with a radius of gyration of 7.0 ± 1.0 nm when placed in serum. In order to form a complex with LFn-GAL4, ASOs were engineered to contain a double-stranded region, and a cell free in vitro translation assay demonstrated that no loss of antisense activity above 30 pmol ASO was evident. The in vitro toxicity of both PA:LFn-GAL4:ASO and PA:LFn-PKR:siRNA complexes was low (IC50>100 µg/mL in HeLa and Vero cells) and subcellular fractionation in conjunction with microscopy confirmed the detection of LFn-GAL4 or LFn-PKR in the cytosol. Syntaxin5 (Synt5) was used as a model target gene to determine pharmacological activity. The PA:LFn-GAL4:ASO complexes had transfection efficiency approximately equivalent to Nucleofection® over a variety of ASO concentrations (24h post-transfection) and during a 72 h time course. In HeLa cells, at 200 pmol ASO (with PA:LFN-GAL4), 5.4 ± 2.0% Synt5 expression was evident relative to an untreated control after 24h. Using 200 pmol ASOs, Nucleofection® reduced Synt5 expression to 8.1 ± 2.1% after 24h. PA:LFn-GAL4:ASO transfection of non- or terminally-differentiated THP-1 cells and Vero cells resulted in 35.2 ± 19.1%, 36.4 ± 1.8% and 22.9 ± 6.9% (respectively) Synt5 expression after treatment with 200 pmol of ASO and demonstrated versatility. Nucleofection® with Stealth RNAi™ siRNA reduced HeLa Synt5 levels to 4.6 ± 6.1% whereas treatment with the PA:LFn-PKR:siRNA resulted in 8.5 ± 3.4% Synt5 expression after 24h (HeLa cells). These studies report for the first time an ASO and RNAi delivery system based upon protein toxin architecture that is devoid of polycations. This system may utilize regulated membrane back-fusion for the cytosolic delivery of ASOs and siRNA, which would account for the lack of toxicity observed. High delivery efficiency suggests further in vivo evaluation is warranted.


Asunto(s)
Antígenos Bacterianos/genética , Toxinas Bacterianas/genética , Técnicas de Silenciamiento del Gen , Oligonucleótidos Antisentido/genética , Interferencia de ARN , ARN Interferente Pequeño/genética , Transfección/métodos , Animales , Antígenos Bacterianos/metabolismo , Toxinas Bacterianas/metabolismo , Chlorocebus aethiops , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica , Células HeLa , Humanos , Oligonucleótidos Antisentido/biosíntesis , Proteínas Qa-SNARE/biosíntesis , Proteínas Qa-SNARE/genética , ARN Interferente Pequeño/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Tiempo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Células Vero , eIF-2 Quinasa/genética , eIF-2 Quinasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA