Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Clin Immunol ; 266: 110337, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39111562

RESUMEN

Rheumatoid arthritis (RA) is an autoimmune disease characterized by a polyarticular synovitis. In recent years, elderly onset rheumatoid arthritis (EORA) has been increasing. Treg cells in RA have been reported to be dysfunctional, but the relationship between aging and their functional changes is unclear. Here, we found that Treg cells from EORA patients had increased percentages, but decreased activity compared to those from younger onset RA (YORA) patients. In experiments using arthritis model mice, decreased suppressive function and oxygen consumption rate (OCR) were observed in Treg cells only from old arthritic mice. Furthermore, type I interferon (IFN) signaling was upregulated in Treg cells from old GIA mice, and IFN-ß decreased the suppressive function of Treg cells. Our findings demonstrate that increased type I IFN signaling in old Treg cells is induced only in the arthritic environment and relates to decreased suppressive function of Treg cells, gets involved in EORA.


Asunto(s)
Envejecimiento , Artritis Reumatoide , Linfocitos T Reguladores , Linfocitos T Reguladores/inmunología , Animales , Artritis Reumatoide/inmunología , Humanos , Anciano , Ratones , Masculino , Persona de Mediana Edad , Envejecimiento/inmunología , Femenino , Transducción de Señal , Adulto , Artritis Experimental/inmunología , Interferón Tipo I/inmunología , Interferón Tipo I/metabolismo , Consumo de Oxígeno , Interferón beta/inmunología
2.
BMC Nephrol ; 25(1): 264, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39152372

RESUMEN

BACKGROUND: To evaluate the seasonal variability of urinary albumin to creatinine ratio (UACR) and eGFR and these effects on three-year eGFR slope in persons with type 2 diabetes (T2D). METHODS: A total of 1135 persons with T2D were analyzed in this single-center, retrospective cohort study in Japan. The standard deviation (SD) of UACR (SD [UACR]) and SD of eGFR (SD [eGFR]) were calculated for each person's 10-point data during the three years, and a multiple linear regression analysis was performed to evaluate associations with eGFR slope. A sensitivity analysis was performed in a group with no medication changes (n = 801). RESULTS: UACR exhibited seasonal variability, being higher in winter and lower in spring, early summer, and autumn especially in the UACR ≥ 30 mg/g subgroup, while eGFR showed no seasonal variability. The eGFR slope was significantly associated with SD (eGFR) (regression coefficient -0.170 [95% CI -0.189--0.151]) and SD (UACR) (0.000 [-0.001-0.000]). SGLT-2 inhibitors, baseline eGFR, and baseline systolic blood pressure (SBP) were also significantly associated. These associated factors, except baseline SBP, were still significant in the sensitivity analysis. CONCLUSIONS: The UACR showed clear seasonal variability. Moreover, SD (UACR) and SD (eGFR) were independently associated with a three-year eGFR slope in persons with T2D. TRIAL REGISTRATION: This study was not registered for clinical trial registration because it was a retrospective observational study.


Asunto(s)
Albuminuria , Creatinina , Diabetes Mellitus Tipo 2 , Tasa de Filtración Glomerular , Humanos , Diabetes Mellitus Tipo 2/orina , Estudios Retrospectivos , Masculino , Femenino , Creatinina/orina , Persona de Mediana Edad , Japón , Albuminuria/orina , Anciano , Estaciones del Año , Estudios de Cohortes , Pueblos del Este de Asia
3.
Mol Metab ; 87: 101991, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39019116

RESUMEN

OBJECTIVE: Dietary medium-chain fatty acids (MCFAs), characterized by chain lengths of 8-12 carbon atoms, have been proposed to have beneficial effects on glucose and lipid metabolism, yet the underlying mechanisms remain elusive. We hypothesized that MCFA intake benefits metabolic health by inducing the release of hormone-like factors. METHODS: The effects of chow diet, high-fat diet rich in long-chain fatty acids (LCFA HFD) fed ad libitum or pair-fed to a high-fat diet rich in MCFA (MCFA HFD) on glycemia, hepatic gene expression, circulating fibroblast growth factor 21 (FGF21), and liver fat content in both wildtype and Fgf21 knockout mice were investigated. The impact of a single oral dose of an MCFA-rich oil on circulating FGF21 and hepatic Fgf21 mRNA expression was assessed. In flag-tagged Crebh knockin mice and liver-specific Crebh knockout mice, fed LCFA HFD or MCFA HFD, active hepatic CREBH and hepatic Fgf21 mRNA abundance were determined, respectively. RESULTS: MCFA HFD improves glucose tolerance, enhances glucose clearance into brown adipose tissue, and prevents high-fat diet-induced hepatic steatosis in wildtype mice. These benefits are associated with increased liver expression of CREBH target genes (Apoa4 and Apoc2), including Fgf21. Both acute and chronic intake of dietary MCFAs elevate circulating FGF21. Augmented hepatic Fgf21 mRNA following MCFA HFD intake is accompanied by higher levels of active hepatic CREBH; and MCFA-induced hepatic Fgf21 expression is blocked in mice lacking Crebh. Notably, while feeding male and female Fgf21 wildtype mice MCFA HFD results in reduced liver triacylglycerol (TG) levels, this liver TG-lowering effect is blunted in Fgf21 knockout mice fed MCFA HFD. The reduction in liver TG levels observed with MCFA HFD was independent of weight loss. CONCLUSIONS: Dietary MCFAs reduce liver fat accumulation via activation of a CREBH-FGF21 signaling axis.


Asunto(s)
Proteína de Unión a Elemento de Respuesta al AMP Cíclico , Dieta Alta en Grasa , Ácidos Grasos , Factores de Crecimiento de Fibroblastos , Metabolismo de los Lípidos , Hígado , Ratones Endogámicos C57BL , Ratones Noqueados , Animales , Factores de Crecimiento de Fibroblastos/metabolismo , Factores de Crecimiento de Fibroblastos/genética , Ratones , Hígado/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Ácidos Grasos/metabolismo , Dieta Alta en Grasa/efectos adversos , Masculino , Hígado Graso/metabolismo , Hígado Graso/prevención & control , Grasas de la Dieta/metabolismo
4.
Mol Metab ; 84: 101934, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38604598

RESUMEN

OBJECTIVES: During fasting, liver pivotally regulates blood glucose levels through glycogenolysis and gluconeogenesis. Kidney also produces glucose through gluconeogenesis. Gluconeogenic genes are transactivated by fasting, but their expression patterns are chronologically different between the two organs. We find that renal gluconeogenic gene expressions are positively correlated with the blood ß-hydroxybutyrate concentration. Thus, we herein aim to investigate the regulatory mechanism and its physiological implications. METHODS: Gluconeogenic gene expressions in liver and kidney were examined in hyperketogenic mice such as high-fat diet (HFD)-fed and ketogenic diet-fed mice, and in hypoketogenic PPARα knockout (PPARα-/-) mice. Renal gluconeogenesis was evaluated by rise in glycemia after glutamine loading in vivo. Functional roles of ß-hydroxybutyrate in the regulation of renal gluconeogenesis were investigated by metabolome analysis and RNA-seq analysis of proximal tubule cells. RESULTS: Renal gluconeogenic genes were transactivated concurrently with blood ß-hydroxybutyrate uprise under ketogenic states, but the increase was blunted in hypoketogenic PPARα-/- mice. Administration of 1,3-butandiol, a ketone diester, transactivated renal gluconeogenic gene expression in fasted PPARα-/- mice. In addition, HFD-fed mice showed fasting hyperglycemia along with upregulated renal gluconeogenic gene expression, which was blunted in HFD-fed PPARα-/- mice. In vitro experiments and metabolome analysis in renal tubular cells showed that ß-hydroxybutyrate directly promotes glucose and NH3 production through transactivating gluconeogenic genes. In addition, RNA-seq analysis revealed that ß-hydroxybutyrate-induced transactivation of Pck1 was mediated by C/EBPß. CONCLUSIONS: Our findings demonstrate that ß-hydroxybutyrate mediates hepato-renal interaction to maintain homeostatic regulation of blood glucose and systemic acid-base balance through renal gluconeogenesis regulation.


Asunto(s)
Gluconeogénesis , Cuerpos Cetónicos , Riñón , Hígado , Ratones Endogámicos C57BL , Ratones Noqueados , Animales , Ratones , Cuerpos Cetónicos/metabolismo , Hígado/metabolismo , Masculino , Riñón/metabolismo , Ácido 3-Hidroxibutírico/metabolismo , Dieta Alta en Grasa , PPAR alfa/metabolismo , PPAR alfa/genética , Glucemia/metabolismo , Dieta Cetogénica
6.
Eur J Clin Invest ; 54(9): e14227, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38662591

RESUMEN

BACKGROUND: Numerous epidemiological studies have shown that hypertriglyceridemia is a significant risk factor for cardiovascular diseases (CVD). However, large clinical studies on triglyceride-lowering therapy have yielded inconsistent results. In the current review, we reassess the importance of triglyceride-lowering therapy in preventing CVD based on previous literature and the recently published findings of the PROMINENT trial. METHODS: This narrative review is based on literature and public documents published up to November 2023. RESULTS: Meta-analyses of trials on peroxisome proliferator-activated receptor α agonists and triglyceride-lowering therapy, including the PROMINENT trial, have indicated that triglyceride-lowering therapy can reduce CVD events. Mendelian randomization studies have also indicated that triglyceride is indeed a true risk factor for coronary artery disease, leaving no doubt about its relationship to CVD. Meanwhile, the negative results from the PROMINENT trial were likely due to the insufficient triglyceride-lowering effect, slight increases in low-density lipoprotein cholesterol and apolipoprotein B, and the inclusion of mostly high-intensity statin users as target patients. It is unlikely that adverse events counteracted the effectiveness of pemafibrate on outcomes. Additionally, pemafibrate has shown positive effects on non-alcoholic fatty liver disease and peripheral artery disease. CONCLUSION: Although the PROMINENT trial did not demonstrate the significance of pemafibrate as a triglyceride-lowering therapy in a specific population, it does not necessarily negate the potential benefits of treating hypertriglyceridemia in reducing CVD events. It is necessary to explore appropriate populations that could benefit from this therapy, utilize data from the PROMINENT trial and other databases, and validate findings in real-world settings.


Asunto(s)
Enfermedades Cardiovasculares , Hipertrigliceridemia , Humanos , Hipertrigliceridemia/tratamiento farmacológico , Hipertrigliceridemia/complicaciones , Enfermedades Cardiovasculares/prevención & control , Hipolipemiantes/uso terapéutico , Triglicéridos/sangre , Triglicéridos/metabolismo , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Benzoxazoles/uso terapéutico , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Enfermedad de la Arteria Coronaria/prevención & control , LDL-Colesterol , Ensayos Clínicos Controlados Aleatorios como Asunto , Butiratos
7.
Respir Investig ; 62(4): 526-530, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38640569

RESUMEN

Recent advances in fatty acid analysis have highlighted the links between lipid disruption and disease development. Lipid abnormalities are well-established risk factors for many of the most common chronic illnesses, and their involvement in asthma is also becoming clear. Here, we review research demonstrating the role of abnormal lipid metabolism in asthma, with a focus on saturated fatty acids and sphingolipids. High levels of palmitic acid, the most abundant saturated fatty acid in the human body, have been found in the airways of asthmatic patients with obesity, and were shown to worsen eosinophilic airway inflammation in asthma model mice on a high-fat diet. Aside from being a building block of longer-chain fatty acids, palmitic acid is also the starting point for de novo synthesis of ceramides, a class of sphingolipids. We outline the three main pathways for the synthesis of ceramides, which have been linked to the severity of asthma and act as precursors for the dynamic lipid mediator sphingosine 1-phosphate (S1P). S1P signaling is involved in allergen-induced eosinophilic inflammation, airway hyperresponsiveness, and immune-cell trafficking. A recent study of mice with mutations for the elongation of very long-chain fatty acid family member 6 (Elovl6), an enzyme that elongates fatty acid chains, has highlighted the potential role of palmitic acid composition, and thus lipid balance, in the pathophysiology of allergic airway inflammation. Elovl6 may be a potential therapeutic target in severe asthma.


Asunto(s)
Asma , Ceramidas , Elongasas de Ácidos Grasos , Ácidos Grasos , Metabolismo de los Lípidos , Ácido Palmítico , Esfingolípidos , Asma/metabolismo , Asma/etiología , Humanos , Animales , Esfingolípidos/metabolismo , Ceramidas/metabolismo , Ratones , Ácidos Grasos/metabolismo , Ácido Palmítico/metabolismo , Elongasas de Ácidos Grasos/metabolismo , Lisofosfolípidos/metabolismo , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Acetiltransferasas/metabolismo , Modelos Animales de Enfermedad , Obesidad/metabolismo , Transducción de Señal , Dieta Alta en Grasa/efectos adversos
8.
J Atheroscler Thromb ; 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38538338

RESUMEN

AIM: This study aimed to analyze two cases of marked hypo-high-density lipoprotein (HDL) cholesterolemia to identify mutations in ATP-binding cassette transporter A1 (ABCA1) and elucidate the molecular mechanism by which these novel pathological mutations contribute to hypo-HDL cholesterolemia in Tangier disease. METHODS: Wild type and mutant expression plasmids containing a FLAG tag inserted at the C-terminus of the human ABCA1 gene were generated and transfected into HEK293T cells. ABCA1 protein expression and cholesterol efflux were evaluated via Western blotting and efflux assay. The difference in the rate of change in protein expression was evaluated when proteolytic and protein-producing systems were inhibited. RESULTS: In case 1, a 20-year-old woman presented with a chief complaint of gait disturbance. Her HDL-C level was only 6.2 mg/dL. Tangier disease was suspected because of muscle weakness, decreased nerve conduction velocity, and splenomegaly. Whole-exome analysis showed compound heterozygosity for a W484* nonsense mutation and S1343I missense mutation, which confirmed Tangier disease. Cholesterol efflux decreased by a mixture of W484* and S1343I mutations. The S1343I mutation decreased the protein production rate but increased the degradation rate, decreasing the protein levels. This patient also had Krabbe disease. The endogenous ABCA1 protein level of macrophage cell decreased by knocking down its internal galactocerebrosidase.Case 2, a 51-year-old woman who underwent tonsillectomy presented with peripheral neuropathy, corneal opacity, and HDL-C of 3.4 mg/dL. Whole-exome analysis revealed compound heterozygosity for R579* and R1572* nonsense mutations, which confirmed Tangier disease. CONCLUSION: Case 1 is a new ABCA1 mutation with complex pathogenicity, namely, a W484*/S1343I compound heterozygote with marked hypo-HDL cholesterolemia. Analyses of the compound heterozygous mutations indicated that decreases in ABCA1 protein levels and cholesterol efflux activity caused by the novel S1343I mutation combined with loss of W484* protein activity could lead to marked hypo-HDL cholesterolemia. Galactocerebrosidase dysfunction could also be a potential confounding factor for ABCA1 protein function.

9.
J Bone Metab ; 31(1): 21-30, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38485238

RESUMEN

BACKGROUND: No consensus exists regarding which anthropometric measurements are related to bone mineral density (BMD), and this relationship may vary according to sex and age. A large Japanese cohort was analyzed to provide an understanding of the relationship between BMD and anthropometry while adjusting for known confounding factors. METHODS: Our cohort included 10,827 participants who underwent multiple medical checkups including distal forearm BMD scans. Participants were stratified into four groups according to age (≥50 years or <50 years) and sex. The BMD values were adjusted for confounding factors, after which single and partial correlation analyses were performed. The prevalence of osteopenia was plotted for each weight index (weight or body mass index [BMI]) class. RESULTS: Cross-sectional studies revealed that weight was more favorably correlated than BMI in the older group (R=0.278 and 0.212 in men and R=0.304 and 0.220 in women, respectively), whereas weight and BMI were weakly correlated in the younger age groups. The prevalence of osteopenia exhibited a negative linear relationship with weight among older women ≥50 years of age, and an accelerated increase was observed with decreasing weight in older men weighing <50 kg and younger women weighing <60 kg. When weight was replaced with BMI, the prevalence was low in most subgroups classified by weight. CONCLUSIONS: Weight, rather than BMI, was the most important indicator of osteopenia but it might not be predictive of future bone loss.

10.
Int J Mol Sci ; 25(3)2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38339104

RESUMEN

One of the extracellular matrix proteins, tenascin-C (TN-C), is known to be upregulated in age-related inflammatory diseases such as cancer and cardiovascular diseases. Expression of this molecule is frequently detected, especially in the macrophage-rich areas of atherosclerotic lesions; however, the role of TN-C in mechanisms underlying the progression of atherosclerosis remains obscure. Previously, we found a hidden bioactive sequence termed TNIIIA2 in the TN-C molecule and reported that the exposure of this sequence would be carried out through limited digestion of TN-C by inflammatory proteases. Thus, we hypothesized that some pro-atherosclerotic phenotypes might be elicited from macrophages when they were stimulated by TNIIIA2. In this study, TNIIIA2 showed the ability to accelerate intracellular lipid accumulation in macrophages. In this experimental condition, an elevation of phagocytic activity was observed, accompanied by a decrease in the expression of transporters responsible for lipid efflux. All these observations were mediated through the induction of excessive ß1-integrin activation, which is a characteristic property of the TNIIIA2 sequence. Finally, we demonstrated that the injection of a drug that targets TNIIIA2's bioactivity could rescue mice from atherosclerotic plaque expansion. From these observations, it was shown that TN-C works as a pro-atherosclerotic molecule through an internal TNIIIA2 sequence. The possible advantages of clinical strategies targeting TNIIIA2 are also indicated.


Asunto(s)
Aterosclerosis , Células Espumosas , Placa Aterosclerótica , Animales , Ratones , Proteínas de la Matriz Extracelular , Fibronectinas/metabolismo , Células Espumosas/metabolismo , Lípidos , Péptidos/química , Tenascina/metabolismo
11.
Front Immunol ; 14: 1251784, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38259495

RESUMEN

Macrophages are essential for the proper inflammatory and reparative processes that lead to regeneration of skeletal muscle after injury. Recent studies have demonstrated close links between the function of activated macrophages and their cellular metabolism. Sterol regulatory element-binding protein 1 (SREBP1) is a key regulator of lipid metabolism and has been shown to affect the activated states of macrophages. However, its role in tissue repair and regeneration is poorly understood. Here we show that systemic deletion of Srebf1, encoding SREBP1, or macrophage-specific deletion of Srebf1a, encoding SREBP1a, delays resolution of inflammation and impairs skeletal muscle regeneration after injury. Srebf1 deficiency impairs mitochondrial function in macrophages and suppresses the accumulation of macrophages at sites of muscle injury. Lipidomic analyses showed the reduction of major phospholipid species in Srebf1 -/- muscle myeloid cells. Moreover, diet supplementation with eicosapentaenoic acid restored the accumulation of macrophages and their mitochondrial gene expression and improved muscle regeneration. Collectively, our results demonstrate that SREBP1 in macrophages is essential for repair and regeneration of skeletal muscle after injury and suggest that SREBP1-mediated fatty acid metabolism and phospholipid remodeling are critical for proper macrophage function in tissue repair.


Asunto(s)
Macrófagos , Músculo Esquelético , Proteína 1 de Unión a los Elementos Reguladores de Esteroles , Fosfolípidos , Regeneración , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Animales , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA