Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Base de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; : e2401821, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38738755

RESUMEN

The demand for gas sensing systems that enable fast and precise gas recognition is growing rapidly. However, substantial challenges arise from the complex fabrication process of sensor arrays, time-consuming data transmission to an external processor, and high energy consumption in multi-stage data processing. In this study, a gas sensing system using on-chip annealing for fast and power-efficient gas detection is proposed. By utilizing a micro-heater embedded in the gas sensor, the sensing material of adjacent sensors in the same substrate can be easily varied without further fabrication steps. The response to oxidizing gas is constrained in metal oxide (MOX) sensing material with small grain sizes, as the depletion width of grain cannot extend beyond the grain size during the gas reaction. On the other hand, the response to reducing gases and humidity, which decrease the depletion width, is less affected by grain sizes. A readout circuit integrating a differential amplifier and dual FET-type gas sensors effectively emphasizes the response to oxidizing gases by canceling the response to reducing gases and humidity. The selective on-chip annealing method is applicable to various MOX sensing materials, demonstrating its potential for application in commercial fields due to its simplicity and expandability.

2.
Adv Sci (Weinh) ; 10(30): e2302506, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37651074

RESUMEN

Artificial olfactory systems (AOSs) that mimic biological olfactory systems are of great interest. However, most existing AOSs suffer from high energy consumption levels and latency issues due to data conversion and transmission. In this work, an energy- and area-efficient AOS based on near-sensor computing is proposed. The AOS efficiently integrates an array of sensing units (merged field effect transistor (FET)-type gas sensors and amplifier circuits) and an AND-type nonvolatile memory (NVM) array. The signals of the sensing units are directly connected to the NVM array and are computed in memory, and the meaningful linear combinations of signals are output as bit line currents. The AOS is designed to detect food spoilage by employing thin zinc oxide films as gas-sensing materials, and it exhibits low detection limits for H2 S and NH3 gases (0.01 ppm), which are high-protein food spoilage markers. As a proof of concept, monitoring the entire spoilage process of chicken tenderloin is demonstrated. The system can continuously track freshness scores and food conditions throughout the spoilage process. The proposed AOS platform is applicable to various applications due to its ability to change the sensing temperature and programmable NVM cells.


Asunto(s)
Conservación de los Recursos Energéticos , Gases
3.
ACS Appl Mater Interfaces ; 15(18): 22651-22661, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37115020

RESUMEN

Low-power metal oxide (MOX)-based gas sensors are widely applied in edge devices. To reduce power consumption, nanostructured MOX-based sensors that detect gas at low temperatures have been reported. However, the fabrication process of these sensors is difficult for mass production, and these sensors are lack uniformity and reliability. On the other hand, MOX film-based gas sensors have been commercialized but operate at high temperatures and exhibit low sensitivity. Herein, commercially advantageous highly sensitive, film-based indium oxide sensors operating at low temperatures are reported. Ar and O2 gases are simultaneously injected during the sputtering process to form a hydroxy-rich-surface In2O3 film. Conventional indium oxide (In2O3) films (A0) and hydroxy-rich indium oxide films (A1) are compared using several analytical techniques. A1 exhibits a work function of 4.92 eV, larger than that of A0 (4.42 eV). A1 exhibits a Debye length 3.7 times longer than that of A0. A1 is advantageous for gas sensing when using field effect transistors (FETs) and resistors as transducers. Because of the hydroxy groups present on the surface of A1, A1 can react with NO2 gas at a lower temperature (∼100 °C) than A0 (180 °C). Operando diffuse reflectance infrared Fourier transform spectrometry (DRIFTS) shows that NO2 gas is adsorbed to A1 as nitrite (NO2-) at 100 °C and nitrite and nitrate (NO3-) at 200 °C. After NO2 is adsorbed as nitrate, the sensitivity of the A1 sensor decreases and its low-temperature operability is compromised. On the other hand, when NO2 is adsorbed only as nitrite, the performance of the sensor is maintained. The reliable hydroxy-rich FET-type gas sensor shows the best performance compared to that of the existing film-based NO2 gas sensors, with a 2460% response to 500 ppb NO2 gas at a power consumption of 1.03 mW.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA