Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 11602, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773168

RESUMEN

Solid electrolytes hold substantial promise as vital components of all-solid-state batteries. Enhancing their performance necessitates simultaneous improvements in their stability and lithium conductivity. These properties can be calculated using first-principles simulations, provided that the crystal structure of the material and the diffusion pathway through the material are known. However, solid electrolytes typically incorporate dopants to enhance their properties, necessitating the optimization of the dopant configuration for the simulations. Yet, performing such calculations via the first-principles approach is so costly that existing approaches usually rely on predetermined dopant configurations informed by existing knowledge or are limited to systems doped with only a few atoms. The proposed method enables the optimization of the dopant configuration with the support of neural network potential (NNP). Our approach entails the use of molecular dynamics to analyze the diffusion after the optimization of the dopant configuration. The application of our approach to Li 10 MP 2 S 12 - x O x (M = Ge, Si, or Sn) reproduce the experimental results well. Furthermore, analysis of the lithium diffusion pathways suggests that the activation energy of diffusion undergoes a percolation transition. This study demonstrates the effectiveness of NNPs in the systematic exploration of solid electrolytes.

2.
Nat Commun ; 13(1): 2991, 2022 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-35637178

RESUMEN

Computational material discovery is under intense study owing to its ability to explore the vast space of chemical systems. Neural network potentials (NNPs) have been shown to be particularly effective in conducting atomistic simulations for such purposes. However, existing NNPs are generally designed for narrow target materials, making them unsuitable for broader applications in material discovery. Here we report a development of universal NNP called PreFerred Potential (PFP), which is able to handle any combination of 45 elements. Particular emphasis is placed on the datasets, which include a diverse set of virtual structures used to attain the universality. We demonstrated the applicability of PFP in selected domains: lithium diffusion in LiFeSO4F, molecular adsorption in metal-organic frameworks, an order-disorder transition of Cu-Au alloys, and material discovery for a Fischer-Tropsch catalyst. They showcase the power of PFP, and this technology provides a highly useful tool for material discovery.


Asunto(s)
Estructuras Metalorgánicas , Redes Neurales de la Computación , Adsorción , Catálisis
3.
J Comput Chem ; 40(1): 237-246, 2019 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-30341948

RESUMEN

Na2 FePO4 F is a promising cathode material for a Na-ion battery because of its high electronic capacity and good cycle performance. In this work, first principle calculations combined with cluster expansion and the Monte Carlo method have been applied to analyze the charge and discharge processes of Na2 FePO4 F by examining the voltage curve and the phase diagram. As a result of the density functional theory calculation and experimental verification with structural analysis, we found that the most stable structure of Na1.5 FePO4 F has the P21 /b11 space group, which has not been reported to date. The estimated voltage curve has two clear plateaus caused by the two-phase structure composed of P21 /b11 Na1.5 FePO4 F and Pbcn Na2 FePO4 F or Na1 FePO4 F and separated along the c-axis direction. The phase diagram shows the stability of the phase-separated structure. Considering that Na2 FePO4 F has diffusion paths in the a- and c-axis directions, Na2 FePO4 F has both innerphase and interphase diffusion paths. We suggest that the stable two-phase structure and the diffusion paths to both the innerphase and interphases are a key for the very clear plateau. We challenge to simulate a nonequilibrium state at high rate discharge with high temperature by introducing a coordinate-dependent chemical potential. The simulation shows agreement with the experimental discharge curve on the disappearance of the two plateaus. © 2018 Wiley Periodicals, Inc.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA