Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Turk J Pharm Sci ; 20(1): 39-47, 2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36864594

RESUMEN

Objectives: Olmesartan medoxomil (OLM) and metoprolol succinate (MPS) in fixed-dose combination (FDC) tablet formulation prescribed extensively. Stability indicating (SI) method for impurities and related substance (RS) test quantitates the amount of these analytes in formulation; the manuscript presents SI/RS-ultra-high performance liquid chromatography-photodiode array (UHPLC-PDA) method for OLM and MPS and their impurities. Materials and Methods: Well-resolved separation of all analytes was achieved with gradient elution on a Shimadzu on Shimpack GIST-C18 (100 mm x 2.1 mm, 2 µm) column maintained at 25°C. Mobile phase-A consist of 0.1% orthophosphoric acid in water and mobile phase-B was acetonitrile at a flow rate of 0.4 mL/min, data integrated at 225 nm and 16 min of short runtime for satisfactory elution of all peaks. Results: The proposed SI/RS-UHPLC-PDA method was developed and validated as per International Conference on Harmonisation (ICH) of Technical Requirements guidelines. The system suitability test complied by all eluted peaks of the interest with acceptable linearity, recovery, and precision. Specificity, robustness, and method sensitivity parameters were determined; all the parameters were found to be within the limits. All the impurities and stress-degraded peaks were well resolved. Conclusion: The proposed method was found to be simple, fast, linear, and accurate. Further, the method is precise, robust, and specific; suitable for routine IPQC during active pharmaceutical ingredient manufacturing, stability and impurity profiling studies of the titled bulk analytes. Furthermore, the method can be extended to assess the levels of impurities formed during life cycle of new FDCs of titled analytes.

2.
J Dermatolog Treat ; 33(2): 885-896, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32603203

RESUMEN

BACKGROUND: Present investigation was aimed to develop aspasomal gel of Mometasone Furoate for the treatment of Psoriasis that are biologically active and deliver drug at controlled rate and decrease dosing frequency. METHODS: The vesicles were fabricated using film hydration method and optimized using 32 factorial Design. Prepared formulations were evaluated for percent drug loading, vesicle size, Zeta potential, polydispersity index and morphological studies. Gel was prepared using carbopol by loading optimized drug loaded asposomes and was evaluated for drug content, pH, viscosity and spreadability. The drug release study from the gel was done using dialysis membrane and goat skin. Anti- oxidant potency of the prepared aspasomal gel was determined by Ferric Reducing Assay whereas, in-vivo performance for inflammation and skin irritation was carried out using Wistar rats. RESULTS: Optimized aspasomes demonstrated desired properties for entrapment efficiency (74.72 ± 1.8), vesicle size (282.9 ± 1.7), polydispersity index (0.2), zeta potential (-20.2 mV) with spherical shape. The results recorded for drug release from the optimized aspasomal gel exhibited sustained release (24h) compared to the marketed cream (5h). Depot formation of Mometasone furoate loaded aspasomal gel in the epidermis was confirmed by ex vivo skin penetration study by using fluorescent marker. In-vivo study revealed no any irritation and inflammation to the skin promoting drug delivery system to treat psoriasis. CONCLUSION: In conclusion, Mometasone furoate loaded aspasomal gel releases the drug for longer duration of time and reduce dosing frequency, providing the new dimension for the treatment of psoriasis.


Asunto(s)
Psoriasis , Administración Tópica , Animales , Geles , Humanos , Furoato de Mometasona/uso terapéutico , Psoriasis/tratamiento farmacológico , Ratas , Ratas Wistar , Absorción Cutánea
3.
J Liposome Res ; 32(2): 146-158, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33847220

RESUMEN

The current research was undertaken to design stealth liposomes of 5-Fluorouracil for reducing its cardiotoxicity and prolong the half-life by developing long-circulating liposomes. The liposomes were prepared by the NH4EDTA gradient method, where EDTA is used as a cardioprotectant. Ascorbyl-6-palmitate was also used which helped for the synergistic effect of 5-Fluorouracil to counteract the cancer cells and provide promising application in the treatment of breast cancer cells. Taguchi design was used for screening of formulation and HSPC phospholipid was selected. The drug-excipient compatibility was checked through FTIR which showed all the excipients were compatible with the drug. The formulation was optimized by using 32 factorial design. The drug to lipid ratio (1:5) and Ascorbyl-6-Palmitate concentration (15 mg) were selected. The vesicle size of the prepared liposomes was found to be 70.12 ± 0.58 nm and uniform distribution was observed. The zeta potential and entrapment efficiency of the stealth liposomes were found -16.28 mV and 92 ± 0.007% respectively. In-vitro drug release study of formulation showed drug release of 63.50 ± 0.94% in 24 hrs. The formulation was sterilized by 0.22 µm Mixed cellulose esters (MCE) membrane filter and passed sterility test. Moreover, a biodistribution study was performed by Fluorescence microscopy and by HPLC method, which showed formulation was circulated for 24 hours. Finally, a cell line study indicated that prepared formulation possess greater anti-tumour activity. The cardiotoxicity study revealed that the stealth liposomes have minimum cardiotoxicity as compare to the plain drug.


Asunto(s)
Neoplasias de la Mama , Liposomas , Neoplasias de la Mama/tratamiento farmacológico , Cardiotoxicidad , Ácido Edético/uso terapéutico , Femenino , Fluorouracilo/farmacología , Humanos , Liposomas/uso terapéutico , Palmitatos/uso terapéutico , Tamaño de la Partícula , Polietilenglicoles , Distribución Tisular
4.
Prog Biomater ; 9(4): 259-275, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33252721

RESUMEN

The present investigation was aimed to synthesize, optimize, and characterize lipid/drug conjugate nanoparticles for delivering 5-fluorouracil (5-FU) to treat brain cancer. The Box-Behnken design was used to optimize the formulation, evaluate the particle size, entrapment efficiency, morphology, in vitro drug release study, and stability profiles. The in vitro performance was executed using cell line studies. The in vivo performance was carried out for pharmacokinetic studies, sterility test, biodistribution studies, and distribution lipid-drug conjugated (LDC) nanoparticles in the brain. Particle size, zeta potential, entrapment efficiency, and morphology of the optimized formulation demonstrated desirable results. In vitro release pattern showed initial fast release, followed by sustained release up to 48 h. Cytotoxic effects of blank stearic acid nanoparticles, LDC nanoparticles, and 5-FU solution on human glioma cell lines U373 MG cell showed more cytotoxicity by LDC-NPs compared to others. The values reported for LDC (AUC = 19.37 ± 0.09 µg/mL h and VD 2.4 ± 0.24 mL) and pure drug (AUC = 8.37 ± 0.04 µg/mL h and VD = 5.24 ± 0.29 mL) indicate higher concentrations of LDC in systemic circulation, while pure 5-FU was found to be largely available in tissue rather than blood circulation. The t1/2 for LDC represents an approximate rise by ninefold, while MRT (12.10 ± 0.44 h) denotes 12-fold rise than pure 5-FU indicating the prolonged circulation of LDC. Free 5-FU concentration in the brain was maximum (5.24 ± 0.01 µg/g) after 3 h, while for the optimized formulation of LDC it was twofold greater estimated as 11.52 ± 0.32 µg/g. In conclusion, the efficiency of 5-FU to treat the brain is increased when it is formulated with LDC nanoparticles.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA