Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Plant Physiol Biochem ; 215: 109022, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39137680

RESUMEN

Tonoplast intrinsic proteins (TIPs) are crucial in facilitating the transportation of water and various small solutes across biological membranes. The evolutionary path and functional roles of TIPs is poorly understood in plants. In the present study, a total of 976 TIPs were identified in 104 diverse species and subsequently studied to trace their lineage-specific evolutionary path and tissue-specific function. Interestingly, TIPs were found to be absent in lower forms such as algae and fungi and they evolved later in primitive plants like bryophytes. Bryophytes possess a distant class of TIPs, denoted as TIP6, which is not found in higher plants. The aromatic/arginine (ar/R) selectivity filter found in TIP6 of certain liverworts share similarity with hybrid intrinsic protein (HIP), suggesting an evolutionary kinship. As plants evolved to more advanced forms, TIPs diversified into five different sub-groups (TIP1 to TIP5). Notably, TIP5 is a sub-group unique to angiosperms. The evolutionary history of the TIP subfamily reveals an interesting observation that the TIP3 subgroup has evolved within seed-bearing Spermatophyta. Further, TIPs exhibit tissue-specific expression that is conserved within various plant species. Specifically, the TIP3s were found to be exclusively expressed in seeds. Quantitative PCR analysis of TIP3s showed gradually increasing expression in soybean seed developmental stages. The expression of TIP3s in different plant species was also found to be gradually increasing during seed maturation. The results presented here address the knowledge gap concerning the evolutionary background of TIPs, specifically TIP3 in plants, and provide valuable insights for a deeper comprehension of the functions of TIPs in plants.


Asunto(s)
Evolución Molecular , Proteínas de Plantas , Semillas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Semillas/genética , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Filogenia , Regulación de la Expresión Génica de las Plantas , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética
2.
Plant Physiol Biochem ; 208: 108459, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38484684

RESUMEN

The essentiality of silicon (Si) has always been a matter of debate as it is not considered crucial for the lifecycles of most plants. But beneficial effects of endogenous Si and its supplementation have been observed in many plants. Silicon plays a pivotal role in alleviating the biotic and abiotic stress in plants by acting as a physical barrier as well as affecting molecular pathways involved in stress tolerance, thus widely considered as "quasi-essential". In soil, most of Si is found in complex forms as mineral silicates which is not available for plant uptake. Monosilicic acid [Si(OH)4] is the only plant-available form of silicon (PAS) present in the soil. The ability of a plant to uptake Si is positively correlated with the PAS concentration of the soil. Since many cultivated soils often lack a sufficient amount of PAS, it has become common practice to supplement Si through the use of Si-based fertilizers in various crop cultivation systems. This review outlines the use of natural and chemical sources of Si as fertilizer, different regimes of Si fertilization, and conclude by identifying the optimum concentration of Si required to observe the beneficial effects in plants. Also, the different mathematical models defining the mineral dynamics for Si uptake at whole plant scale considering various natural factors like plant morphology, mineral distribution, and transporter expression have been discussed. Information provided here will further help in increasing understanding of Si role and thereby facilitate efficient exploration of the element as a fertilizer in crop production.


Asunto(s)
Fertilizantes , Silicio , Silicio/farmacología , Suelo/química , Transporte Biológico , Plantas/metabolismo , Minerales/metabolismo
3.
Plant Sci ; 338: 111903, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37865210

RESUMEN

The global population is growing rapidly, and with it, the demand for food. In the coming decades, more and more people will be living in urban areas, where land for traditional agriculture is scarce. Urban agriculture can help to meet this growing demand for food in a sustainable way. Urban agriculture is the practice of growing food in urban areas. It can be done on rooftops, balconies, vacant lots, and even in alleyways. Urban agriculture can produce a variety of crops, including fruits, vegetables, and herbs. It can also help to improve air quality, reduce stormwater runoff, and create jobs. Biotechnology can be used to improve the efficiency and sustainability of urban agriculture. Biotechnological tools can be used to develop crops that are resistant to pests and diseases, that are more tolerant of drought and heat, and that have higher yields. Biotechnology can also be used to improve the nutritional value of crops. This review article discusses the need for and importance of urban agriculture, biotechnology, and genome editing in meeting the growing demand for food in urban areas. It also discusses the potential of biotechnology to improve the sustainability of urban agriculture.


Asunto(s)
Biotecnología , Verduras , Humanos , Productos Agrícolas/genética , Valor Nutritivo , Agricultura
4.
Plant Cell Physiol ; 63(1): 4-18, 2022 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-34558628

RESUMEN

Silicon (Si) is widely accepted as a beneficial element for plants. Despite the substantial progress made in understanding Si transport mechanisms and modes of action in plants, several questions remain unanswered. In this review, we discuss such outstanding questions and issues commonly encountered by biologists studying the role of Si in plants in relation to Si bioavailability. In recent years, advances in our understanding of the role of Si-solubilizing bacteria and the efficacy of Si nanoparticles have been made. However, there are many unknown aspects associated with structural and functional features of Si transporters, Si loading into the xylem, and the role of specialized cells like silica cells and compounds preventing Si polymerization in plant tissues. In addition, despite several 1,000 reports showing the positive effects of Si in high as well as low Si-accumulating plant species, the exact roles of Si at the molecular level are yet to be understood. Some evidence suggests that Si regulates hormonal pathways and nutrient uptake, thereby explaining various observed benefits of Si uptake. However, how Si modulates hormonal pathways or improves nutrient uptake remains to be explained. Finally, we summarize the knowledge gaps that will provide a roadmap for further research on plant silicon biology, leading to an exploration of the benefits of Si uptake to enhance crop production.


Asunto(s)
Disponibilidad Biológica , Transporte Biológico/efectos de los fármacos , Productos Agrícolas/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Silicio/metabolismo
5.
Plant Soil ; 466(1-2): 1-20, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34720209

RESUMEN

BACKGROUND: Silicon (Si) is widely considered a non-essential but beneficial element for higher plants, providing broad protection against various environmental stresses (both biotic and abiotic), particularly in species that can readily absorb the element. Two plasma-membrane proteins are known to coordinate the radial transport of Si (in the form of Si(OH)4) from soil to xylem within roots: the influx channel Lsi1 and the efflux transporter Lsi2. From a structural and mechanistic perspective, much more is known about Lsi1 (a member of the NIP-III subgroup of the Major Intrinsic Proteins) compared to Lsi2 (a putative Si(OH)4/H+ antiporter, with some homology to bacterial anion transporters). SCOPE: Here, we critically review the current state of understanding regarding the physiological role and molecular characteristics of Lsi2. We demonstrate that the structure-function relationship of Lsi2 is largely uncharted and that the standing transport model requires much better supportive evidence. We also provide (to our knowledge) the most current and extensive phylogenetic analysis of Lsi2 from all fully sequenced higher-plant genomes. We end by suggesting research directions and hypotheses to elucidate the properties of Lsi2. CONCLUSIONS: Given that Lsi2 is proposed to mediate xylem Si loading and thus root-to-shoot translocation and biosilicification, it is imperative that the field of Si transport focus its efforts on a better understanding of this important topic. With this review, we aim to stimulate and advance research in the field of Si transport and thus better exploit Si to improve crop resilience and agricultural output. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s11104-021-05061-1.

6.
Plant Physiol Biochem ; 166: 128-139, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34102436

RESUMEN

Rice blast caused by Magnaporthe oryzae and sheath blight caused by Rhizoctonia solani, are the two major diseases of rice that cause enormous losses in rice production worldwide. Identification and utilization of broad-spectrum resistance resources have been considered sustainable and effective strategies. However, the majority of the resistance genes and QTLs identified have often been found to be race-specific, and their resistance is frequently broken down due to continuous exposure to the pathogen. Therefore, integrated approaches to improve plant resistance against such devastating pathogen have great importance. Silicon (Si), a beneficial element for plant growth, has shown to provide a prophylactic effect against many pathogens. The application of Si helps the plants to combat the disease-causing pathogens, either through its deposition in different parts of the plant or through modulation/induction of specific defense genes by yet an unknown mechanism. Some reports have shown that Si imparts resistance to rice blast and sheath blight. The present review summarizes the mechanism of Si transport and deposition and its effect on rice growth and development. A special emphasis has been given to explore the existing evidence showing Si mediated blast and sheath blight resistance and the mechanism involved in resistance. This review will help to understand the prophylactic effects of Si against sheath blight and blast disease at the mechanical, physiological, and genetic levels. The information provided here will help develop a strategy to explore Si derived benefits for sustainable rice production.


Asunto(s)
Oryza , Ascomicetos , Resistencia a la Enfermedad , Oryza/genética , Enfermedades de las Plantas , Rhizoctonia , Silicio/farmacología
7.
Plant Physiol Biochem ; 165: 173-186, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34044226

RESUMEN

Silicon (Si) is an omnipresent and second most abundant element in the soil lithosphere after oxygen. Silicon being a beneficial element imparts several benefits to the plants and animals. In many plant species, including the cereals the uptake of Si from the soil even exceeds the uptake of essential nutrients. Cereals are the monocots which are known to accumulate a high amount of Si, and reaping maximum benefits associated with it. Cereals contribute a high amount of Si to the human diet compared to other food crops. In the present review, we have summarized distribution of the dietary Si in cereals and its role in the animal and human health. The Si derived benefits in cereals, specifically with respect to biotic and abiotic stress tolerance has been described. We have also discussed the molecular mechanism involved in the Si uptake in cereals, evolution of the Si transport mechanism and genetic variation in the Si concentration among different cultivars of the same species. Various genetic mutants deficient in the Si uptake have been developed and many QTLs governing the Si accumulation have been identified in cereals. The existing knowledge about the Si biology and available resources needs to be explored to understand and improve the Si accumulation in crop plants to achieve sustainability in agriculture.


Asunto(s)
Grano Comestible , Silicio , Animales , Transporte Biológico , Suelo , Estrés Fisiológico
8.
Nanoscale Adv ; 3(14): 4019-4028, 2021 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-36132841

RESUMEN

Silicon (Si), a beneficial element for plants, is known for its prophylactic effect under stress conditions. Many studies have documented the role of biogenic silica (bulk-Si) in alleviating biotic and abiotic stresses in plants. The scarce amount of the plant-available form of Si (monosilicic acid) in most of the cultivated soil and the limited efficacy of silicate fertilizers (bulk-Si) are the major concerns for the exploration of Si-derived benefits. In this regard, recent advances in nanotechnology have opened up new avenues for crop improvement, where plants can derive benefits associated with Si nanoparticles (SiNPs). Most of the studies have shown the positive effect of SiNPs on the growth and development of plants specifically under stress conditions. In contrast, a few studies have also reported their toxic effects on some plant species. Hence, there is a pertinent need for elaborative research to explore the utility of SiNPs in agriculture. The present review summarizes SiNP synthesis, application, uptake, and role in stimulating plant growth and development. The advantages of SiNPs over conventional bulk-Si fertilizers in agriculture, their efficacy in different plant species, and safety concerns have also been discussed. The gaps in our understanding of various aspects of SiNPs in relation to plants have also been highlighted, which will guide future research in this area. The increased attention towards SiNP-related research will help to realize the true potential of SiNPs in agriculture.

9.
J Hazard Mater ; 409: 124598, 2021 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-33234398

RESUMEN

Aquaporins (AQPs) facilitates the transport of small solutes like water, urea, carbon dioxide, boron, and silicon (Si) and plays a critical role in important physiological processes. In this study, genome-wide characterization of AQPs was performed in bottle gourd. A total of 36 AQPs were identified in the bottle gourd, which were subsequently analyzed to understand the pore-morphology, exon-intron structure, subcellular-localization. In addition, available transcriptome data was used to study the tissue-specific expression. Several AQPs showed tissue-specific expression, more notably the LsiTIP3-1 having a high level of expression in flowers and fruits. Based on the in-silico prediction of solute specificity, LsiNIP2-1 was predicted to be a Si transporter. Silicon was quantified in different tissues, including root, young leaves, mature leaves, tendrils, and fruits of bottle gourd plants. More than 1.3% Si (d.w.) was observed in bottle gourd leaves, testified the in-silico predictions. Silicon deposition evaluated with an energy-dispersive X-ray coupled with a scanning electron microscope showed a high Si accumulation in the shaft of leaf trichomes. Similarly, co-localization of Si with arsenic and antimony was observed. Expression profiling performed with real-time quantitative PCR showed differential expression of AQPs in response to Si supplementation. The information provided in the present study will be helpful to better understand the AQP transport mechanism, particularly Si and other metalloids transport and localization in plants.


Asunto(s)
Acuaporinas , Metaloides , Acuaporinas/genética , Acuaporinas/metabolismo , Transporte Biológico , Plantas/metabolismo , Silicio
10.
Plants (Basel) ; 9(6)2020 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-32604788

RESUMEN

Aquaporins (AQPs) play a pivotal role in the cellular transport of water and many other small solutes, influencing many physiological and developmental processes in plants. In the present study, extensive bioinformatics analysis of AQPs was performed in Aquilegia coerulea L., a model species belonging to basal eudicots, with a particular focus on understanding the AQPs role in the developing petal nectar spur. A total of 29 AQPs were identified in Aquilegia, and their phylogenetic analysis performed with previously reported AQPs from rice, poplar and Arabidopsis depicted five distinct subfamilies of AQPs. Interestingly, comparative analysis revealed the loss of an uncharacterized intrinsic protein II (XIP-II) group in Aquilegia. The absence of the entire XIP subfamily has been reported in several previous studies, however, the loss of a single clade within the XIP family has not been characterized. Furthermore, protein structure analysis of AQPs was performed to understand pore diversity, which is helpful for the prediction of solute specificity. Similarly, an AQP AqcNIP2-1 was identified in Aquilegia, predicted as a silicon influx transporter based on the presence of features such as the G-S-G-R aromatic arginine selectivity filter, the spacing between asparagine-proline-alanine (NPA) motifs and pore morphology. RNA-seq analysis showed a high expression of tonoplast intrinsic proteins (TIPs) and plasma membrane intrinsic proteins (PIPs) in the developing petal spur. The results presented here will be helpful in understanding the AQP evolution in Aquilegia and their expression regulation, particularly during floral development.

11.
Genomics ; 112(1): 749-763, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31095998

RESUMEN

Chitinases belong to the group of Pathogenesis-related (PR) proteins that provides protection against fungal pathogens. This study presents the, genome-wide identification and characterization of chitinase gene family in two important oilseed crops B. juncea and C. sativa belonging to family Brassicaceae. We have identified 47 and 79 chitinase genes in the genomes of B. juncea and C. sativa, respectively. Phylogenetic analysis of chitinases in both the species revealed four distinct sub-groups, representing different classes of chitinases (I-V). Microscopic and biochemical study reveals the role of reactive oxygen species (ROS) scavenging enzymes in disease resistance of B. juncea and C. sativa. Furthermore, qRT-PCR analysis showed that expression of chitinases in both B. juncea and C. sativa was significantly induced after Alternaria brassicae infection. However, the fold change in chitinase gene expression was considerably higher in C. sativa compared to B. juncea, which further proves their role in C. sativa disease resistance to A. brassicae. This study provides comprehensive analysis on chitinase gene family in B. juncea and C. sativa and in future may serve as a potential candidate for improving disease resistance in B. juncea through transgenic approach.


Asunto(s)
Alternaria , Brassicaceae/genética , Quitinasas/genética , Familia de Multigenes , Planta de la Mostaza/genética , Antioxidantes/metabolismo , Brassicaceae/enzimología , Brassicaceae/microbiología , Quitinasas/química , Quitinasas/clasificación , Cromosomas de las Plantas , Duplicación de Gen , Genoma de Planta , Modelos Moleculares , Planta de la Mostaza/enzimología , Planta de la Mostaza/microbiología , Filogenia , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Estrés Fisiológico/genética , Sintenía , Transcripción Genética
12.
Plants (Basel) ; 8(5)2019 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-31091747

RESUMEN

Induced mutagenesis is one of the most effective strategies for trait improvement without altering the well-optimized genetic background of the cultivars. In this review, several currently accessible methods such as physical, chemical and insertional mutagenesis have been discussed concerning their efficient exploration for the tomato crop improvement. Similarly, challenges for the adaptation of genome-editing, a newly developed technique providing an opportunity to induce precise mutation, have been addressed. Several efforts of genome-editing have been demonstrated in tomato and other crops, exploring its effectiveness and convenience for crop improvement. Descriptive data compiled here from such efforts will be helpful for the efficient exploration of technological advances. However, uncertainty about the regulation of genome-edited crops is still a significant concern, particularly when timely trait improvement in tomato cultivars is needed. In this regard, random approaches of induced mutagenesis are still promising if efficiently explored in breeding applications. Precise identification of casual mutation is a prerequisite for the molecular understanding of the trait development as well as its utilization for the breeding program. Recent advances in sequencing techniques provide an opportunity for the precise detection of mutagenesis-induced sequence variations at a large scale in the genome. Here, we reviewed several novel next-generation sequencing based mutation mapping approaches including Mutmap, MutChromeSeq, and whole-genome sequencing-based mapping which has enormous potential to accelerate the mutation breeding in tomato. The proper utilization of the existing well-characterized tomato mutant resources combined with novel mapping approaches would inevitably lead to rapid enhancement of tomato quality and yield. This article provides an overview of the principles and applications of mutagenesis approaches in tomato and discusses the current progress and challenges involved in tomato mutagenesis research.

13.
BMC Genomics ; 20(1): 222, 2019 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-30885116

RESUMEN

BACKGROUND: Aquaporins (AQPs) facilitate transport of water and small solutes across cell membranes and play an important role in different physiological processes in plants. Despite their importance, limited data is available about AQP distribution and function in the economically important oilseed crop peanut, Arachis hypogea (AABB). The present study reports the identification and structural and expression analysis of the AQPs found in the diploid progenitor genomes of A. hypogea i.e. Arachis duranensis (AA) and Arachis ipaensis (BB). RESULTS: Genome-wide analysis revealed the presence of 32 and 36 AQPs in A. duranensis and A. ipaensis, respectively. Phylogenetic analysis showed similar numbers of AQPs clustered in five distinct subfamilies including the plasma membrane intrinsic proteins (PIPs), the tonoplast intrinsic proteins (TIPs), the nodulin 26-like intrinsic proteins (NIPs), the small basic intrinsic proteins (SIPs), and the uncharacterized intrinsic proteins (XIPs). A notable exception was the XIP subfamily where XIP1 group was observed only in A. ipaensis genome. Protein structure evaluation showed a hydrophilic aromatic/arginine (ar/R) selectivity filter (SF) in PIPs whereas other subfamilies mostly contained a hydrophobic ar/R SF. Both genomes contained one NIP2 with a GSGR SF indicating a conserved ability within the genus to uptake silicon. Analysis of RNA-seq data from A. hypogea revealed a similar expression pattern for the different AQP paralogs of AA and BB genomes. The TIP3s showed seed-specific expression while the NIP1s' expression was confined to roots and root nodules. CONCLUSIONS: The identification and the phylogenetic analysis of AQPs in both Arachis species revealed the presence of all five sub-families of AQPs. Within the NIP subfamily, the presence of a NIP2 in both genomes supports a conserved ability to absorb Si within plants of the genus. The global expression profile of AQPs in A. hypogea revealed a similar pattern of AQP expression regardless of the subfamilies or the genomes. The tissue-specific expression of AQPs suggests an important role in the development and function of the respective organs. The AQPs identified in the present study will serve as a resource for further characterization and possible exploitation of AQPs to understand their physiological role in A. hypogea.


Asunto(s)
Acuaporinas/genética , Arachis/clasificación , Arachis/genética , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Proteínas de Plantas/genética , Acuaporinas/metabolismo , Arachis/metabolismo , Diploidia , Evolución Molecular , Perfilación de la Expresión Génica , Familia de Multigenes , Filogenia , Proteínas de Plantas/metabolismo
14.
Plants (Basel) ; 8(3)2019 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-30901942

RESUMEN

Over the past few decades, heavy metal contamination in soil and water has increased due to anthropogenic activities. The higher exposure of crop plants to heavy metal stress reduces growth and yield, and affect the sustainability of agricultural production. In this regard, the use of silicon (Si) supplementation offers a promising prospect since numerous studies have reported the beneficial role of Si in mitigating stresses imposed by biotic as well as abiotic factors including heavy metal stress. The fundamental mechanisms involved in the Si-mediated heavy metal stress tolerance include reduction of metal ions in soil substrate, co-precipitation of toxic metals, metal-transport related gene regulation, chelation, stimulation of antioxidants, compartmentation of metal ions, and structural alterations in plants. Exogenous application of Si has been well documented to increase heavy metal tolerance in numerous plant species. The beneficial effects of Si are particularly evident in plants able to accumulate high levels of Si. Consequently, to enhance metal tolerance in plants, the inherent genetic potential for Si uptake should be improved. In the present review, we have discussed the potential role and mechanisms involved in the Si-mediated alleviation of metal toxicity as well as different approaches for enhancing Si-derived benefits in crop plants.

15.
Funct Integr Genomics ; 19(1): 43-60, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29943206

RESUMEN

SOC1, a MADS-box type II transcription factor, integrates environmental and endogenous cues to promote flowering in angiosperms. Recent reports implicating SOC1 in roles beyond floral transition prompted functional characterization of SOC1 in polyploid rapeseed mustard genomes. Gene characterization in Brassicas necessitates analysis of composite homeolog function. While insertional mutagenesis is untenable in Brassicas owing to gene redundancy, gain-of-function approach entails serial characterization of individual homeologs. Herein, we demonstrate modulated floral promotive effects in natural variants of Brassica SOC1 and provide lateral branching as a probable outcome of polyploidy-induced gene diversification. Ectopic expression of two B genome specific SOC1 variants in Arabidopsis thaliana resulted in differential floral acceleration and manifestation of multiple vegetative rosettes. Characterization of composite homeolog function in B. juncea via introgression of Brassica SOC1 specific artificial miRNA, designed to target homeologs, also exhibited modifications in floral transition and lateral branching. Comprehensive analysis of field performance of B. juncea transgenics displayed altered fitness across 11 agronomic traits. Crucially, reduced SOC1 levels directly impacted two developmental traits, namely, flowering time and number of lateral branches which in turn influenced several dependent agronomic traits. While delayed flowering and crop maturity resulted in altered fatty acid composition with higher SFA and lower PUFA in transgenics relative to controls, reduction in overall count of lateral branches caused a concomitant decrease in silique count which ultimately impacted total seed yield in transgenics. Statistical analysis revealed number of secondary branches as the most critical trait influencing seed yield. Based on our findings, we propose enhancing levels Brassica SOC1, a key target, for achieving earliness in flowering, improved seed yield and oil quality, and studying trait trade-offs.


Asunto(s)
Proteínas de Arabidopsis/genética , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Proteínas de Dominio MADS/genética , Planta de la Mostaza/genética , Aceites de Plantas/metabolismo , Semillas/genética , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Emparejamiento Base , Secuencia de Bases , Ácidos Grasos/metabolismo , Flores/genética , Flores/crecimiento & desarrollo , Flores/metabolismo , Interacción Gen-Ambiente , Aptitud Genética , Metabolismo de los Lípidos/genética , Proteínas de Dominio MADS/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Planta de la Mostaza/crecimiento & desarrollo , Planta de la Mostaza/metabolismo , Conformación de Ácido Nucleico , Aceites de Plantas/química , Tallos de la Planta/genética , Tallos de la Planta/crecimiento & desarrollo , Tallos de la Planta/metabolismo , Plantas Modificadas Genéticamente , Poliploidía , ARN de Planta/genética , ARN de Planta/metabolismo , Semillas/química , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Factores de Tiempo
16.
Plant Sci ; 277: 251-266, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30466591

RESUMEN

Natural structural variants of regulatory proteins causing quantitative phenotypic consequences have not been reported in plants. Herein, we show that 28 natural structural variants of FT homeologs, isolated from 6 species of Brassica, differ with respect to amino-acid substitutions in regions critical for interactions with FD and represent two evolutionarily distinct categories. Analysis of structural models of selected candidates from Brassica juncea (BjuFT_AAMF1) and Brassica napus (BnaFT_CCLF) predicted stronger binding between BjuFT and Arabidopsis thaliana FD. Over-expression of BjuFT and BnaFT in wild type and ft-10 mutant backgrounds of Arabidopsis validated higher potency of BjuFT in triggering floral transition. Analysis of gain-of-function and artificial miRNA mediated silenced lines of B. juncea implicated Brassica FT in multiple agronomic traits beyond flowering, consistent with a pleiotropic effect. Several dependent and independent traits such as lateral branching, silique shape, seed size, oil-profile, stomatal morphology and plant height were found altered in mutant lines. Enhanced FT levels caused early flowering, which in turn was positively correlated to a higher proportion of desirable fatty acids (PUFA). However, higher FT levels also resulted in altered silique shape and reduced seed size, suggesting trait trade-offs. Modulation of FT levels for achieving optimal balance of trait values and parsing pair-wise interactions among a reportoire of regulatory protein homeologs in polyploid genomes are indeed future areas of crop research.


Asunto(s)
Brassica napus/metabolismo , Brassica napus/fisiología , Flores/metabolismo , Flores/fisiología , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/fisiología , Brassica napus/genética , Ácidos Grasos/metabolismo , Flores/genética , MicroARNs/genética , Planta de la Mostaza/genética , Planta de la Mostaza/metabolismo , Planta de la Mostaza/fisiología , Estomas de Plantas/genética , Estomas de Plantas/metabolismo , Estomas de Plantas/fisiología , Sitios de Carácter Cuantitativo/genética
17.
Mol Genet Genomics ; 293(5): 1121-1138, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29752548

RESUMEN

Functional characterization of regulatory genes governing flowering time is a research priority for breeding earliness in crop Brassicas. Highly polyploid genomes of Brassicas pose challenges in unraveling homeolog gene function. In Arabidopsis, five MIR172 paralogs control flowering time and floral organ identity by down-regulating AP2 and AP2-like genes. The impact of homeolog diversification on MIR172 loci, however, needs to be examined in morphologically diverse Brassicas. Herein, we analyze fractionation status and phylogeny of MIR172 and target AP2 from Brassicas and compare functionality of MIR172 variants representing distinct sub-genomes and progenitor genomes. Copy number analysis revealed higher retention of MIR172 loci relative to AP2 in diploid and amphi-diploid Brassica species. Dendrogram of 87 MIR172 sequences from Brassicaceae showed five major clusters corresponding to MIR172a-MIR172e which further separated into sub-genome and progenitor genome specific clades. Similar groupings were observed in the phylogeny of 11 Brassica AP2 and AP2-like genes. Over-expression of a pair of natural variants for each of MIR172b, MIR172d and MIR172e representing sub-genomes, progenitor genomes and species of Brassicas displayed floral acceleration in all transgenic lines indicating a strong selection pressure on MIR172. All gain-of-function lines, except 35S::MIR172e and 35S::MIR172e' displayed floral organ defects implying altered target spectrum of MIR172e relative to MIR172b and MIR172d. Expression of MIR172e caused marginal earliness in flowering time in B. juncea. In conclusion, this study demonstrates tightly preserved role of homeologs and natural variants of MIR172 family in mediating flowering in Brassicas and suggests their deployment for introgression of early flowering trait.


Asunto(s)
Arabidopsis/genética , Flores/genética , MicroARNs/genética , Arabidopsis/crecimiento & desarrollo , Expresión Génica Ectópica/genética , Flores/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas/genética , Proteínas de Homeodominio , Filogenia , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Poliploidía
18.
Front Plant Sci ; 8: 1334, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28824671

RESUMEN

Aquaporins (AQPs) are a class of integral membrane proteins involved in the transport of water and many other small solutes. The AQPs have been extensively studied in many land species obtaining water and nutrients from the soil, but their distribution and evolution have never been investigated in aquatic plant species, where solute assimilation is mostly through the leaves. In this regard, identification of AQPs in the genome of Zostera marina L. (eelgrass), an aquatic ecological model species could reveal important differences underlying solute uptake between land and aquatic species. In the present study, genome-wide analysis led to the identification of 25 AQPs belonging to four subfamilies, plasma membrane intrinsic proteins (PIPs), tonoplast intrinsic proteins (TIPs), nodulin 26-like intrinsic proteins (NIPs), small basic intrinsic proteins (SIPs) in eelgrass. As in other monocots, the XIP subfamily was found to be absent from the eelgrass genome. Further classification of subfamilies revealed a unique distribution pattern, namely the loss of the NIP2 (NIP-III) subgroup, which is known for silicon (Si) transport activity and ubiquitously present in monocot species. This finding has great importance, since the eelgrass population stability in natural niche is reported to be associated with Si concentrations in water. In addition, analysis of available RNA-seq data showed evidence of expression in 24 out of the 25 AQPs across four different tissues such as root, vegetative tissue, male flower and female flower. In contrast to land plants, higher expression of PIPs was observed in shoot compared to root tissues. This is likely explained by the unique plant architecture of eelgrass where most of the nutrients and water are absorbed by shoot rather than root tissues. Similarly, higher expression of the TIP1 and TIP5 families was observed specifically in male flowers suggesting a role in pollen maturation. This genome-wide analysis of AQP distribution, evolution and expression dynamics can find relevance in understanding the adaptation of aquatic and land species to their respective environments.

19.
Sci Rep ; 7: 46137, 2017 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-28447607

RESUMEN

Membrane intrinsic proteins (MIPs) form transmembrane channels and facilitate transport of myriad substrates across the cell membrane in many organisms. Majority of plant MIPs have water transporting ability and are commonly referred as aquaporins (AQPs). In the present study, we identified aquaporin coding genes in flax by genome-wide analysis, their structure, function and expression pattern by pan-genome exploration. Cross-genera phylogenetic analysis with known aquaporins from rice, arabidopsis, and poplar showed five subgroups of flax aquaporins representing 16 plasma membrane intrinsic proteins (PIPs), 17 tonoplast intrinsic proteins (TIPs), 13 NOD26-like intrinsic proteins (NIPs), 2 small basic intrinsic proteins (SIPs), and 3 uncharacterized intrinsic proteins (XIPs). Amongst aquaporins, PIPs contained hydrophilic aromatic arginine (ar/R) selective filter but TIP, NIP, SIP and XIP subfamilies mostly contained hydrophobic ar/R selective filter. Analysis of RNA-seq and microarray data revealed high expression of PIPs in multiple tissues, low expression of NIPs, and seed specific expression of TIP3 in flax. Exploration of aquaporin homologs in three closely related Linum species bienne, grandiflorum and leonii revealed presence of 49, 39 and 19 AQPs, respectively. The genome-wide identification of aquaporins, first in flax, provides insight to elucidate their physiological and developmental roles in flax.


Asunto(s)
Acuaporinas/genética , Lino/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Familia de Multigenes , Proteínas de Plantas/genética , Secuencia de Aminoácidos , Acuaporinas/química , Acuaporinas/metabolismo , Secuencia Conservada , Evolución Molecular , Exones/genética , Lino/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas , Intrones/genética , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Dominios Proteicos , Estructura Terciaria de Proteína , Alineación de Secuencia , Silicio/farmacología , Fracciones Subcelulares/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA