Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38961841

RESUMEN

HIV disease remains prevalent in the USA and is particularly prevalent in sub-Saharan Africa. Recent investigations revealed that mitochondrial dysfunction in kidney contributes to HIV-associated nephropathy (HIVAN) in Tg26 transgenic mice. We hypothesized that nicotinamide adenine dinucleotide (NAD) deficiency contributes to energetic dysfunction and progressive tubular injury. We investigated metabolomic mechanisms of HIVAN tubulopathy. Tg26 and wild-type (WT) mice were treated with the farnesoid-X receptor (FXR) agonist INT-747 or nicotinamide riboside (NR) from 6 to 12 weeks of age. Multi-omic approaches were used to characterize kidney tissue transcriptomes and metabolomes. Treatment with INT-747 or NR ameliorated kidney tubular injury, as shown by serum creatinine, the tubular injury marker urinary neutrophil-associated lipocalin and tubular morphometry. Integrated analysis of metabolomic and transcriptomic measurements showed that NAD levels and production were globally downregulated in Tg26 mouse kidney, especially nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme in the NAD salvage pathway. Further, NAD-dependent deacetylase sirtuin3 activity and mitochondrial oxidative phosphorylation activity were lower in ex vivo proximal tubules from Tg26 mouse kidneys compared to those of WT mice. Restoration of NAD levels in kidney improved these abnormalities. These data suggest that NAD deficiency might be a treatable target for HIVAN.

3.
bioRxiv ; 2023 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-37090576

RESUMEN

APOL1 high-risk variants partially explain the high kidney disease prevalence among African ancestry individuals. Many mechanisms have been reported in cell culture models, but few have been demonstrated in mouse models. Here we characterize two models: (1) HIV-associated nephropathy (HIVAN) Tg26 mice crossed with bacterial artificial chromosome (BAC)/APOL1 transgenic mice and (2) interferon-γ administered to BAC/APOL1 mice. Both models showed exacerbated glomerular disease in APOL1-G1 compared to APOL1-G0 mice. HIVAN model glomerular bulk RNA-seq identified synergistic podocyte-damaging pathways activated by the APOL1-G1 allele and by HIV transgenes. Single-nuclear RNA-seq revealed podocyte-specific patterns of differentially-expressed genes as a function of APOL1 alleles. Eukaryotic Initiation factor-2 pathway was the most activated pathway in the interferon-γ model and the most deactivated pathway in the HIVAN model. HIVAN mouse model podocyte single-nuclear RNA-seq data showed similarity to human focal segmental glomerulosclerosis (FSGS) glomerular bulk RNA-seq data. Furthermore, single-nuclear RNA-seq data from interferon-γ mouse model podocytes (in vivo) showed similarity to human FSGS single-cell RNA-seq data from urine podocytes (ex vivo) and from human podocyte cell lines (in vitro) using bulk RNA-seq. These data highlight differences in the transcriptional effects of the APOL1-G1 risk variant in a model specific manner. Shared differentially expressed genes in podocytes in both mouse models suggest possible novel glomerular damage markers in APOL1 variant-induced diseases. Transcription factor Zbtb16 was downregulated in podocytes and endothelial cells in both models, possibly contributing to glucocorticoid-resistance. In summary, these findings in two mouse models suggest both shared and distinct therapeutic opportunities for APOL1 glomerulopathies.

4.
bioRxiv ; 2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-36945458

RESUMEN

Hyponatremia and salt wasting is a common occurance in patients with HIV/AIDS, however, the understanding of its contributing factors is limited. HIV viral protein R (Vpr) contributes to HIV-associated nephropathy. To investigate the effects of Vpr on the expression level of the Slc12a3 gene, encoding the Na-Cl cotransporter, which is responsible for sodium reabsorption in distal nephron segments, we performed single-nucleus RNA sequencing of kidney cortices from three wild-type (WT) and three Vpr-transgenic (Vpr Tg) mice. The results showed that the percentage of distal convoluted tubule (DCT) cells was significantly lower in Vpr Tg mice compared with WT mice (P < 0.05), and that in Vpr Tg mice, Slc12a3 expression was not different in DCT cell cluster. The Pvalb+ DCT1 subcluster had fewer cells in Vpr Tg mice compared with WT (P < 0.01). Immunohistochemistry demonstrated fewer Slc12a3+ Pvalb+ DCT1 segments in Vpr Tg mice. Differential gene expression analysis comparing Vpr Tg and WT in the DCT cluster showed Ier3, an inhibitor of apoptosis, to be the most downregulated gene. These observations demonstrate that the salt-wasting effect of Vpr in Vpr Tg mice is mediated by loss of Slc12a3+ Pvalb+ DCT1 segments via apoptosis dysregulation.

5.
Kidney Int Rep ; 8(1): 164-178, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36644347

RESUMEN

Introduction: The mechanisms in podocytes that mediate the pathologic effects of the APOL1 high-risk (HR) variants remain incompletely understood, although various molecular and cellular mechanisms have been proposed. We previously established conditionally immortalized human urine-derived podocyte-like epithelial cell (HUPEC) lines to investigate APOL1 HR variant-induced podocytopathy. Methods: We conducted comprehensive transcriptomic analysis, including mRNA, microRNA (miRNA), and transfer RNA fragments (tRFs), to characterize the transcriptional profiles in undifferentiated and differentiated HUPEC with APOL1 HR (G1/G2, 2 cell lines) and APOL1 low-risk (LR) (G0/G0, 2 cell lines) genotypes. We reanalyzed single-cell RNA-seq data from urinary podocytes from focal segmental glomerulosclerosis (FSGS) subjects to characterize the effect of APOL1 genotypes on podocyte transcriptomes. Results: Differential expression analysis showed that the ribosomal pathway was one of the most enriched pathways, suggesting that altered function of the translation initiation machinery may contribute to APOL1 variant-induced podocyte injury. Expression of genes related to the elongation initiation factor 2 pathway was also enriched in the APOL1 HR urinary podocytes from single-cell RNA-seq, supporting a prior report on the role of this pathway in APOL1-associated cell injury. Expression of microRNA and tRFs were analyzed, and the profile of small RNAs differed by both differentiation status and APOL1 genotype. Conclusion: We have profiled the transcriptomic landscape of human podocytes, including mRNA, miRNA, and tRF, to characterize the effects of differentiation and of different APOL1 genotypes. The candidate pathways, miRNAs, and tRFs described here expand understanding of APOL1-associated podocytopathies.

6.
PLoS One ; 17(9): e0273313, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36129874

RESUMEN

HIV-associated nephropathy (HIVAN) impairs functions of both glomeruli and tubules. Attention has been previously focused on the HIVAN glomerulopathy. Tubular injury has drawn increased attention because sodium wasting is common in hospitalized HIV/AIDS patients. We used viral protein R (Vpr)-transgenic mice to investigate the mechanisms whereby Vpr contributes to urinary sodium wasting. In phosphoenolpyruvate carboxykinase promoter-driven Vpr-transgenic mice, in situ hybridization showed that Vpr mRNA was expressed in all nephron segments, including the distal convoluted tubule. Vpr-transgenic mice, compared with wild-type littermates, markedly increased urinary sodium excretion, despite similar plasma renin activity and aldosterone levels. Kidneys from Vpr-transgenic mice also markedly reduced protein abundance of the Na+-Cl- cotransporter (NCC), while mineralocorticoid receptor (MR) protein expression level was unchanged. In African green monkey kidney cells, Vpr abrogated the aldosterone-mediated stimulation of MR transcriptional activity. Gene expression of Slc12a3 (NCC) in Vpr-transgenic mice was significantly lower compared with wild-type mice, assessed by both qRT-PCR and RNAScope in situ hybridization analysis. Chromatin immunoprecipitation assays identified multiple MR response elements (MRE), located from 5 kb upstream of the transcription start site and extending to the third exon of the SLC12A3 gene. Mutation of MRE and SP1 sites in the SLC12A3 promoter region abrogated the transcriptional responses to aldosterone and Vpr, indicating that functional MRE and SP1 are required for the SLC12A3 gene suppression in response to Vpr. Thus, Vpr attenuates MR transcriptional activity and inhibits Slc12a3 transcription in the distal convoluted tubule and contributes to salt wasting in Vpr-transgenic mice.


Asunto(s)
Productos del Gen vpr , VIH-1 , Aldosterona/metabolismo , Aldosterona/farmacología , Animales , Chlorocebus aethiops , Productos del Gen vpr/metabolismo , VIH-1/genética , Túbulos Renales Distales/metabolismo , Ratones , Ratones Transgénicos , Fosfoenolpiruvato , ARN Mensajero/metabolismo , Receptores de Mineralocorticoides/genética , Receptores de Mineralocorticoides/metabolismo , Renina/metabolismo , Sodio/metabolismo , Cloruro de Sodio/metabolismo , Simportadores del Cloruro de Sodio/metabolismo , Miembro 3 de la Familia de Transportadores de Soluto 12/genética , Miembro 3 de la Familia de Transportadores de Soluto 12/metabolismo , Tiazidas
7.
Commun Biol ; 1: 188, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30417125

RESUMEN

APOL1 risk alleles associate with chronic kidney disease in African Americans, but the mechanisms remain to be fully understood. We show that APOL1 risk alleles activate protein kinase R (PKR) in cultured cells and transgenic mice. This effect is preserved when a premature stop codon is introduced to APOL1 risk alleles, suggesting that APOL1 RNA but not protein is required for the effect. Podocyte expression of APOL1 risk allele RNA, but not protein, in transgenic mice induces glomerular injury and proteinuria. Structural analysis of the APOL1 RNA shows that the risk variants possess secondary structure serving as a scaffold for tandem PKR binding and activation. These findings provide a mechanism by which APOL1 variants damage podocytes and suggest novel therapeutic strategies.

8.
Am J Physiol Renal Physiol ; 315(1): F140-F150, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29357411

RESUMEN

Apolipoprotein L1 ( ApoL1) genetic variants are strongly associated with kidney diseases. We investigated the role of ApoL1 variants in monocyte differentiation and eicosanoid production in macrophages, as activated tissue macrophages in kidney might contribute to kidney injury. In human monocyte THP-1 cells, transient overexpression of ApoL1 (G0, G1, G2) by transfection resulted in a 5- to 11-fold increase in CD14 and CD68 gene expression, similar to that seen with phorbol-12-myristate acetate treatment. All ApoL1 variants caused monocytes to differentiate into atypical M1 macrophages with marked increase in M1 markers CD80, TNF, IL1B, and IL6 and modest increase in the M2 marker CD163 compared with control cells. ApoL1-G1 transfection induced additional CD206 and TGFB1 expression, and ApoL1-G2 transfection induced additional CD204 and TGFB1 expression. Gene expression of prostaglandin E2 (PGE2) synthase and thromboxane synthase and both gene and protein expression of cyclooxygenase-2 (COX-2) were increased by ApoL1-G1 and -G2 variants compared with -G0 transfection. Higher levels of PGE2 and thromboxane B2, a stable metabolite of thromboxane A2, and transforming growth factor (TGF)-ß1 were released into the supernatant of cultured THP-1 cells transfected with ApoL1-G1 and -G2, but not -G0. The increase in PGE2, thromboxane B2, and TGF-ß1 was inhibited by COX-2-specific inhibitor CAY10404 but not by COX-1-specific inhibitor SC-560. These results demonstrate a novel role of ApoL1 variants in the regulation of monocyte differentiation and eicosanoid metabolism, which could modify the immune response and promote inflammatory signaling within the local targeted organs and tissues including the kidney.


Asunto(s)
Apolipoproteína L1/metabolismo , Diferenciación Celular , Ciclooxigenasa 2/metabolismo , Eicosanoides/metabolismo , Variación Genética , Activación de Macrófagos , Macrófagos/enzimología , Macrófagos/patología , Monocitos/enzimología , Apolipoproteína L1/genética , Biomarcadores/metabolismo , Ciclooxigenasa 2/genética , Dinoprostona/metabolismo , Humanos , Monocitos/patología , Fenotipo , Transducción de Señal , Células THP-1 , Tromboxano B2/metabolismo , Transfección , Factor de Crecimiento Transformador beta1/metabolismo , Regulación hacia Arriba
9.
Am J Physiol Renal Physiol ; 312(6): F982-F991, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28077372

RESUMEN

MicroRNAs (miRNAs) are noncoding RNAs that regulate posttranscriptional gene expression. In this study we characterized the circulating and urinary miRNA pattern associated with reduced glomerular filtration rate, using Affymetrix GeneChip miR 4.0 in 28 patients with chronic kidney disease (CKD). Top miRNA discoveries from the human studies were validated in an Alb/TGFß mouse model of CKD, and in rat renal proximal tubular cells (NRK52E) exposed to TGFß1. Plasma and urinary levels of procollagen III N-terminal propeptide and collagen IV were elevated in patients with decreased estimated glomerular filtration rate (eGFR). Expression of 384 urinary and 266 circulatory miRNAs were significantly different between CKD patients with eGFR ≥30 vs. <30 ml·min-1·1.73 m-2 Pathway analysis mapped multiple miRNAs to TGFß signaling-related mRNA targets. Specifically, Let-7a was significantly downregulated, and miR-130a was significantly upregulated, in urine of patients with eGFR <30; miR-1825 and miR-1281 were upregulated in both urine and plasma of patients with decreased eGFR; and miR-423 was significantly downregulated in plasma of patients with decreased eGFR. miRNA expression in urine and plasma of Alb/TGFß mice generally resembled and confirmed most, although not all, of the observations from the human studies. In response to TGFß1 exposure, rat renal proximal tubular cells overexpressed miR-1825 and downregulated miR-423. Thus, miRNA are associated with kidney fibrosis, and specific urinary and plasma miRNA profile may have diagnostic and prognostic utility in CKD.


Asunto(s)
Riñón/metabolismo , MicroARNs/genética , Insuficiencia Renal Crónica/genética , Transcriptoma , Adulto , Anciano , Albúminas/genética , Animales , Línea Celular , Modelos Animales de Enfermedad , Femenino , Fibrosis , Perfilación de la Expresión Génica/métodos , Redes Reguladoras de Genes , Marcadores Genéticos , Predisposición Genética a la Enfermedad , Tasa de Filtración Glomerular , Humanos , Riñón/efectos de los fármacos , Riñón/patología , Riñón/fisiopatología , Masculino , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Ratones Transgénicos , MicroARNs/sangre , MicroARNs/orina , Persona de Mediana Edad , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenotipo , Ratas , Insuficiencia Renal Crónica/sangre , Insuficiencia Renal Crónica/fisiopatología , Insuficiencia Renal Crónica/orina , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta1/farmacología
10.
Kidney Int ; 85(3): 561-9, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24132210

RESUMEN

Renal proximal tubule cells from spontaneously hypertensive rats (SHR), compared with normotensive Wistar-Kyoto rats (WKY), have increased oxidative stress. The contribution of mitochondrial oxidative phosphorylation to the subsequent hypertensive phenotype remains unclear. We found that renal proximal tubule cells from SHR, relative to WKY, had significantly higher basal oxygen consumption rates, adenosine triphosphate synthesis-linked oxygen consumption rates, and maximum and reserve respiration. These bioenergetic parameters indicated increased mitochondrial function in renal proximal tubule cells from SHR compared with WKY. Pyruvate dehydrogenase complex activity was consistently higher in both renal proximal tubule cells and cortical homogenates from SHR than those from WKY. Treatment for 6 days with dichloroacetate, an inhibitor of pyruvate dehydrogenase kinase, significantly increased renal pyruvate dehydrogenase complex activity and systolic blood pressure in 3-week-old WKY and SHR. Therefore, mitochondrial oxidative phosphorylation is higher in renal proximal tubule cells from SHR compared with WKY. Thus, the pyruvate dehydrogenase complex is a determinant of increased mitochondrial metabolism that could be a causal contributor to the hypertension in SHR.


Asunto(s)
Hipertensión/metabolismo , Túbulos Renales Proximales/metabolismo , Mitocondrias/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Presión Sanguínea , Células Cultivadas , Glucólisis , Túbulos Renales Proximales/citología , Masculino , Complejo Piruvato Deshidrogenasa/metabolismo , Ratas Endogámicas SHR , Ratas Endogámicas WKY
11.
Mol Endocrinol ; 27(9): 1564-76, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23842279

RESUMEN

HIV infection and its therapy are associated with disorders of lipid metabolism and bioenergetics. Previous work has suggested that viral protein R (Vpr) may contribute to the development of lipodystrophy and insulin resistance observed in HIV-1-infected patients. In adipocytes, Vpr suppresses mRNA expression of peroxisomal proliferator-activating receptor-γ (PPARγ)-responsive genes and inhibits differentiation. We investigated whether Vpr might interact with PPARß/δ and influence its transcriptional activity. In the presence of PPARß/δ, Vpr induced a 3.3-fold increase in PPAR response element-driven transcriptional activity, a 1.9-fold increase in pyruvate dehydrogenase kinase 4 (PDK4) protein expression, and a 1.6-fold increase in the phosphorylated pyruvate dehydrogenase subunit E1α leading to a 47% decrease in the activity of the pyruvate dehydrogenase complex in HepG2 cells. PPARß/δ knockdown attenuated Vpr-induced enhancement of endogenous PPARß/δ-responsive PDK4 mRNA expression. Vpr induced a 1.3-fold increase in mRNA expression of both carnitine palmitoyltransferase I (CPT1) and acetyl-coenzyme A acyltransferase 2 (ACAA2) and doubled the activity of ß-hydroxylacyl coenzyme A dehydrogenase (HADH). Vpr physically interacted with the ligand-binding domain of PPARß/δ in vitro and in vivo. Consistent with a role in energy expenditure, Vpr increased state-3 respiration in isolated mitochondria (1.16-fold) and basal oxygen consumption rate in intact HepG2 cells (1.2-fold) in an etomoxir-sensitive manner, indicating that the oxygen consumption rate increase is ß-oxidation-dependent. The effects of Vpr on PPAR response element activation, pyruvate dehydrogenase complex activity, and ß-oxidation were reversed by specific PPARß/δ antagonists. These results support the hypothesis that Vpr contributes to impaired energy metabolism and increased energy expenditure in HIV patients.


Asunto(s)
VIH-1/metabolismo , PPAR delta/metabolismo , PPAR-beta/metabolismo , Proteínas Quinasas/metabolismo , Complejo Piruvato Deshidrogenasa/metabolismo , Transcripción Genética , Productos del Gen vpr del Virus de la Inmunodeficiencia Humana/metabolismo , 3-Hidroxiacil-CoA Deshidrogenasas , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células Hep G2 , Humanos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Modelos Biológicos , Proteínas Mutantes/metabolismo , Consumo de Oxígeno/efectos de los fármacos , PPAR delta/agonistas , PPAR-beta/agonistas , Unión Proteica/efectos de los fármacos , Unión Proteica/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Tiazoles/farmacología , Transfección
12.
Am J Physiol Cell Physiol ; 299(2): C464-76, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20445170

RESUMEN

Mitochondrial dysfunction contributes to podocyte injury, but normal podocyte bioenergetics have not been characterized. We measured oxygen consumption rates (OCR) and extracellular acidification rates (ECAR), using a transformed mouse podocyte cell line and the Seahorse Bioscience XF24 Extracellular Flux Analyzer. Basal OCR and ECAR were 55.2 +/- 9.9 pmol/min and 3.1 +/- 1.9 milli-pH units/min, respectively. The complex V inhibitor oligomycin reduced OCR to approximately 45% of baseline rates, indicating that approximately 55% of cellular oxygen consumption was coupled to ATP synthesis. Rotenone, a complex I inhibitor, reduced OCR to approximately 25% of the baseline rates, suggesting that mitochondrial respiration accounted for approximately 75% of the total cellular respiration. Thus approximately 75% of mitochondrial respiration was coupled to ATP synthesis and approximately 25% was accounted for by proton leak. Carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP), which uncouples electron transport from ATP generation, increased OCR and ECAR to approximately 360% and 840% of control levels. FCCP plus rotenone reduced ATP content by 60%, the glycolysis inhibitor 2-deoxyglucose reduced ATP by 35%, and 2-deoxyglucose in combination with FCCP or rotenone reduced ATP by >85%. The lactate dehydrogenase inhibitor oxamate and 2-deoxyglucose did not reduce ECAR, and 2-deoxyglucose had no effect on OCR, although 2-deoxyglucose reduced ATP content by 25%. Mitochondrial uncoupling induced by FCCP was associated with increased OCR with certain substrates, including lactate, glucose, pyruvate, and palmitate. Replication of these experiments in primary mouse podocytes yielded similar data. We conclude that mitochondria play the primary role in maintaining podocyte energy homeostasis, while glycolysis makes a lesser contribution.


Asunto(s)
Glucólisis/fisiología , Fosforilación Oxidativa , Podocitos/metabolismo , Animales , Línea Celular , Línea Celular Transformada , Glomérulos Renales/citología , Glomérulos Renales/metabolismo , Ratones , Ratones Endogámicos , Ratones Transgénicos , Mitocondrias/química , Mitocondrias/metabolismo , Consumo de Oxígeno/fisiología , Podocitos/citología , Transducción de Señal/fisiología , Especificidad por Sustrato/fisiología
13.
Mol Endocrinol ; 22(2): 234-47, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17932108

RESUMEN

HIV-1-infected patients may develop lipodystrophy and insulin resistance. We investigated the effect of the HIV-1 accessory protein viral protein R (Vpr) on the activity of the peroxisome proliferator-activating receptor-gamma (PPARgamma), a key regulator of adipocyte differentiation and tissue insulin sensitivity. We studied expression of PPARgamma-responsive reporter genes in 3T3-L1 mouse adipocytes. We investigated Vpr interaction with the PPAR/retinoid X receptor (RXR)-binding site of the c-Cbl-associating protein (CAP) gene using the chromatin immunoprecipitation assay as well as the interaction of Vpr and PPARgamma using coimmunoprecipitation. Finally, we studied the ability of exogenous Vpr protein to enter cultured adipocytes and retard differentiation. We found that Vpr suppressed PPARgamma-induced transactivation in both undifferentiated and differentiated 3T3-L1 cells. Transcriptional suppression by Vpr required an intact LXXLL coactivator motif. Vpr suppressed mRNA expression of PPARgamma-responsive genes in undifferentiated 3T3-L1 cells and associated with the PPAR/RXR-binding site located in the promoter region of the CAP gene. Vpr interacted with the ligand-binding domain of PPARgamma in an agonist-dependent fashion in vitro. Vpr delivered either by an expression plasmid or as protein added to media suppressed PPARgamma agonist-induced adipocyte differentiation, assessed as lipid accumulation and mRNA expression of the adipocyte differentiation marker adipocyte P2 in 3T3-L1 cells. In conclusion, circulating Vpr or, alternatively, Vpr produced as a consequence of direct infection of adipocytes could suppress in vivo differentiation of preadipocytes by acting as a corepressor of PPARgamma-mediated gene transcription. Vpr may alter sensitivity to insulin and thereby contribute to the development of lipodystrophy and insulin resistance observed in HIV-1-infected patients.


Asunto(s)
Adipocitos/citología , Diferenciación Celular/genética , Productos del Gen vpr/fisiología , VIH-1/fisiología , PPAR gamma/genética , Células 3T3-L1 , Animales , Núcleo Celular/metabolismo , Inmunoprecipitación de Cromatina , Productos del Gen vpr/genética , VIH-1/genética , Células HeLa , Humanos , Inmunoprecipitación , Metabolismo de los Lípidos/genética , Lipodistrofia/metabolismo , Lipodistrofia/virología , Ratones , Análisis de Secuencia por Matrices de Oligonucleótidos , PPAR alfa/genética , PPAR alfa/metabolismo , PPAR delta/genética , PPAR delta/metabolismo , PPAR gamma/metabolismo , Reacción en Cadena de la Polimerasa , Unión Proteica , Receptores X Retinoide/genética , Receptores X Retinoide/metabolismo , Transcripción Genética
14.
Am J Physiol Renal Physiol ; 293(2): F631-40, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17494090

RESUMEN

Progressive fibrosis is a cause of progressive organ dysfunction. Lack of quantitative in vitro models of fibrosis accounts, at least partially, for the slow progress in developing effective antifibrotic drugs. Here, we report two complementary in vitro models of fibrosis suitable for high-throughput screening. We found that, in mesangial cells and renal fibroblasts grown in eight-well chamber slides, transforming growth factor-beta1 (TGF-beta1) disrupted the cell monolayer and induced cell migration into nodules in a dose-, time- and Smad3-dependent manner. The nodules contained increased interstitial collagens and showed an increased collagen I:IV ratio. Nodules are likely a biological consequence of TGF-beta1-induced matrix overexpression since they were mimicked by addition of collagen I to the cell culture medium. TGF-beta1-induced nodule formation was inhibited by vacuum ionized gas treatment of the plate surface. This blockage was further enhanced by precoating plates with matrix proteins but was prevented, at least in part, by poly-l-lysine (PLL). We have established two cell-based models of TGF-beta-induced fibrogenesis, using mesangial cells or fibroblasts cultured in matrix protein or PLL-coated 96-well plates, on which TGF-beta1-induced two-dimensional matrix accumulation, three-dimensional nodule formation, and monolayer disruption can be quantitated either spectrophotometrically or by using a colony counter, respectively. As a proof of principle, chemical inhibitors of Alk5 and the antifibrotic compound tranilast were shown to have inhibitory activities in both assays.


Asunto(s)
Fibrosis/inducido químicamente , Fibrosis/tratamiento farmacológico , Factor de Crecimiento Transformador beta/toxicidad , Animales , Línea Celular , Células Cultivadas , Colorantes , Perros , Evaluación Preclínica de Medicamentos , Células Epiteliales/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Fibroblastos/patología , Fibrosis/patología , Mesangio Glomerular/citología , Mesangio Glomerular/efectos de los fármacos , Humanos , Procesamiento de Imagen Asistido por Computador , Riñón/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Ratones , Microscopía Electrónica , Polilisina/farmacología , Proteína smad3/fisiología
15.
Nephron Exp Nephrol ; 93(3): e92-106, 2003.
Artículo en Inglés | MEDLINE | ID: mdl-12660412

RESUMEN

In order to develop a model in mouse similar to anti- Thy-1 nephritis in the rat, we prepared sheep antiserum against SV40-transformed mouse mesangial (MES 13) cells. In vivo, the anti-mouse mesangial cell serum-treated mice showed severe azotemia that peaked at day 6 and proteinuria that peaked at day 8, in a dose-dependent fashion. Light microscopy and electron microscopy showed duplication of glomerular basement membranes, mesangiolysis, subendothelial and mesangial electron-dense deposits, and foot process effacement. Intraglomerular tuft cell number was significantly reduced at day 4 and there were increased numbers of apoptotic cells at days 2 and 4. SCID mice and mice lacking C3 manifested similar responses to anti-mouse mesangial cell serum, suggesting that T cells, B cells and complement are not required for glomerular injury in this model. In vitro, anti-mouse mesangial cell serum treated mesangial cells showed greater release of lactate dehydrogenase, decreased cell survival, and increased apoptotic cell death. Anti-mouse mesangial cell serum induces glomerulopathy characterized by mesangiolysis and mesangial cell apoptosis, and followed by cellular proliferation.


Asunto(s)
Mesangio Glomerular/citología , Mesangio Glomerular/inmunología , Glomerulonefritis Membranosa/etiología , Sueros Inmunes/toxicidad , Células 3T3 , Enfermedad Aguda , Animales , Especificidad de Anticuerpos , Antígenos de Superficie/inmunología , Apoptosis/inmunología , División Celular/inmunología , Línea Celular , Modelos Animales de Enfermedad , Relación Dosis-Respuesta Inmunológica , Endotoxinas/efectos adversos , Endotoxinas/sangre , Femenino , Mesangio Glomerular/química , Mesangio Glomerular/patología , Glomerulonefritis Membranosa/sangre , Glomerulonefritis Membranosa/inmunología , Sueros Inmunes/metabolismo , Inmunoglobulinas/metabolismo , Riñón/química , Riñón/inmunología , Pulmón/química , Pulmón/inmunología , Ratones , Ratones Congénicos , Ratones Endogámicos BALB C , Ratones Endogámicos , Ratones SCID , Especificidad de Órganos , Ovinos/inmunología , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA