Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Gene ; 925: 148602, 2024 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-38782218

RESUMEN

OBJECTIVE: ACAN gene variants, prevalent monogenic defects linked to short stature, are characterized by impaired cartilage generation in growth plates. We aimed to unravel the genetic basis of short stature in a specific pedigree by investigating the role of a novel non-canonical splicing-site variant, c.630-13G > A, within the ACAN gene. METHOD: Sanger sequencing was used for pedigree verification, and the effects of this variant on mRNA splicing were analyzed through minigene assay. RESULTS: The study revealed that this variant led to the creation of a previously unreported splice site in the fourth intron, resulting in the incorporation of an 11 bp sequence from the intron into the final transcript. This alteration led to a frameshift and formation of a premature termination codon, impacting the structure of the aggrecan protein. CONCLUSIONS: We document the pathogenicity of an ACAN non-canonical splicing-site variant, emphasizing the significance of considering intronic variants during genetic testing.


Asunto(s)
Agrecanos , Intrones , Linaje , Empalme del ARN , Humanos , Agrecanos/genética , Agrecanos/metabolismo , Femenino , Masculino , Enanismo/genética , Sitios de Empalme de ARN/genética
2.
Epileptic Disord ; 26(3): 341-349, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38752894

RESUMEN

OBJECTIVE: DEPDC5 emerges to play a vital role in focal epilepsy. However, genotype-phenotype correlation in DEPDC5-related focal epilepsies is challenging and controversial. In this study, we aim to investigate the genotypic and phenotypic features in DEPDC5-affected patients. METHODS: Genetic testing combined with criteria published by the American College of Medical Genetics and Genomics and the Association for Molecular Pathology (ACMG/AMP), was used to identify pathogenic/likely pathogenic variants in DEPDC5 among the cohort of 479 patients with focal epilepsy. Besides, the literature review was performed to explore the genotype-phenotype correlation and the penetrance in DEPDC5-related focal epilepsies. RESULTS: Eight unrelated probands were revealed to carry different pathogenic/likely pathogenic variants in DEPDC5 and the total prevalence of DEPDC5-related focal epilepsy was 1.67% in the cohort. Sixty-five variants from 28 studies were included in our review. Combined with the cases reported, null variants accounted for a larger proportion than missense variants and were related to unfavorable prognosis (drug resistance or even sudden unexpected death in epilepsy; χ2 = 5.429, p = .020). And, the prognosis of probands with developmental delay/intellectual disability or focal cortical dysplasia was worse than that of probands with simple epilepsy (χ2 = -, p = .006). Besides, the overall penetrance of variants in DEPDC5 was 68.96% (231/335). SIGNIFICANCE: The study expands the variant spectrum of DEPDC5 and proves that the DEPDC5 variant plays a significant role in focal epilepsy. Due to the characteristics of phenotypic heterogeneity and incomplete penetrance, genetic testing is necessary despite no specific family history. And we propose to adopt the ACMG/AMP criteria refined by ClinGen Sequence Variant Interpretation Working Group, for consistency in usage and transparency in classification rationale. Moreover, we reveal an important message to clinicians that the prognosis of DEPDC5-affected patients is related to the variant type and complications.


Asunto(s)
Epilepsias Parciales , Proteínas Activadoras de GTPasa , Estudios de Asociación Genética , Fenotipo , Humanos , Proteínas Activadoras de GTPasa/genética , Epilepsias Parciales/genética , Epilepsias Parciales/fisiopatología , Masculino , Femenino , Niño , Estudios de Cohortes , Preescolar , Adulto , Adolescente , Genotipo , Penetrancia , Adulto Joven , Epilepsia/genética , Epilepsia/fisiopatología
3.
Pediatr Neurol ; 156: 155-161, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38781724

RESUMEN

BACKGROUND: Acute disseminated encephalomyelitis (ADEM) is a common phenotype in children with myelin oligodendrocyte glycoprotein IgG (MOG-IgG)-associated disease. We aimed to identify novel genetic variants that distinguish children with MOG-IgG-positive ADEM (MOG-IgG+ ADEM) from children with MOG-IgG-negative ADEM (MOG-IgG- ADEM) using whole exome sequencing (WES) analysis. METHODS: We conducted a two-stage study design. First, we performed WES on five patients with MOG-IgG+ ADEM and five patients with MOG-IgG- ADEM. Following bioinformatics analysis, the candidate variant list was constructed. Second, 29 children with MOG-IgG+ ADEM and 27 children with MOG-IgG- ADEM, together with discovery cohort, were genotyped to identify the novel variants. RESULTS: WES resulted in 33,999 variants, and 5388 nonsynonymous variants were selected for downstream analysis. In total, 118 protein-affecting variants that were significantly different between the two groups were identified. Together with the five variants extracted from the literature, 49 variants were selected as the candidate variant list for genotyping in the replication cohort. Finally, we identified three variants: rs11171951 in NACα, rs231775 in CTLA4, and rs11171951 in GOLGA5, which were significantly different between MOG-IgG+ ADEM and MOG-IgG- ADEM. Only rs12440118 in NACα remained significant after Bonferroni correction for multiple testing (Padj < 0.001). CONCLUSIONS: We identified strong associations between NACα, CTLA4, and GOLGA5 variants and MOG-IgG+ ADEM in a Han Chinese population of Northern China, which may present novel genetic risk factor distinguishing patients with MOG-IgG+ ADEM from those with MOG-IgG- ADEM.


Asunto(s)
Encefalomielitis Aguda Diseminada , Inmunoglobulina G , Glicoproteína Mielina-Oligodendrócito , Humanos , Glicoproteína Mielina-Oligodendrócito/inmunología , Glicoproteína Mielina-Oligodendrócito/genética , Encefalomielitis Aguda Diseminada/genética , Niño , Masculino , Femenino , China , Preescolar , Inmunoglobulina G/sangre , Secuenciación del Exoma , Variación Genética , Adolescente , Lactante , Autoanticuerpos/sangre
4.
BMC Pediatr ; 24(1): 351, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38778310

RESUMEN

BACKGROUND: Genetic disorders significantly affect patients in neonatal intensive care units, where establishing a diagnosis can be challenging through routine tests and supplementary examinations. Whole-exome sequencing offers a molecular-based approach for diagnosing genetic disorders. This study aimed to assess the importance of whole-exome sequencing for neonates in intensive care through a retrospective observational study within a Chinese cohort. METHODS: We gathered data from neonatal patients at Tianjin Children's Hospital between January 2018 and April 2021. These patients presented with acute illnesses and were suspected of having genetic disorders, which were investigated using whole-exome sequencing. Our retrospective analysis covered clinical data, genetic findings, and the correlation between phenotypes and genetic variations. RESULTS: The study included 121 neonates. Disorders affected multiple organs or systems, predominantly the metabolic, neurological, and endocrine systems. The detection rate for whole-exome sequencing was 52.9% (64 out of 121 patients), identifying 84 pathogenic or likely pathogenic genetic variants in 64 neonates. These included 13 copy number variations and 71 single-nucleotide variants. The most frequent inheritance pattern was autosomal recessive (57.8%, 37 out of 64), followed by autosomal dominant (29.7%, 19 out of 64). In total, 40 diseases were identified through whole-exome sequencing. CONCLUSION: This study underscores the value and clinical utility of whole-exome sequencing as a primary diagnostic tool for neonates in intensive care units with suspected genetic disorders. Whole-exome sequencing not only aids in diagnosis but also offers significant benefits to patients and their families by providing clarity in uncertain diagnostic situations.


Asunto(s)
Secuenciación del Exoma , Unidades de Cuidado Intensivo Neonatal , Humanos , Secuenciación del Exoma/métodos , Recién Nacido , Estudios Retrospectivos , Masculino , Femenino , China , Enfermedades Genéticas Congénitas/diagnóstico , Enfermedades Genéticas Congénitas/genética , Variaciones en el Número de Copia de ADN , Pruebas Genéticas/métodos , Pueblos del Este de Asia
5.
Mol Biol Rep ; 51(1): 498, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38598037

RESUMEN

BACKGROUND: Cutis laxa is a connective tissue disease caused by abnormal synthesis or secretion of skin elastic fibers, leading to skin flabby and saggy in various body parts. It can be divided into congenital cutis laxa and acquired cutis laxa, and inherited cutis laxa syndromes is more common in clinic. METHODS: In this study, we reported a case of a Han-Chinese male newborn with ATP6V0A2 gene variant leading to cutis laxa. The proband was identified by whole-exome sequencing to determine the novel variant, and their parents were verified by Sanger sequencing. Bioinformatics analysis and minigene assay were used to verify the effect of this variant on splicing function. RESULTS: The main manifestations of the proband are skin laxity, abnormal facial features, and enlargement of the anterior fontanelle. Whole-exome sequencing showed that the newborn carried a non-canonical splicing-site variant c.117 + 5G > T, p. (?) in ATP6V0A2 gene. Sanger sequencing showed that both parents of the proband carried the heterozygous variant. The results of bioinformatics analysis and minigene assay displayed that the variant site affected the splicing function of pre-mRNA of the ATP6V0A2 gene. CONCLUSIONS: In this study, it was identified that ATP6V0A2 gene c. 117 + 5G > T may be the cause of the disease. The non-canonical splicing variants of ATP6V0A2 gene were rarely reported in the past, and this variant expanded the variants spectrum of the gene. The functional study of minigene assay plays a certain role in improving the level of evidence for the pathogenicity of splicing variants, which lays a foundation for prenatal counseling and follow-up gene therapy.


Asunto(s)
Cutis Laxo , Femenino , Humanos , Recién Nacido , Masculino , Embarazo , Pueblo Asiatico/genética , China , Cutis Laxo/genética , ATPasas de Translocación de Protón , Empalme del ARN/genética , Piel
6.
Front Pediatr ; 12: 1346987, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38633326

RESUMEN

Background: The gamma-aminobutyric acid (GABA) variant causes developmental and epileptic encephalopathy 45 (DEE45), an autosomal dominant disorder that results in oculocortical visual impairment, reduced muscle tone, psychomotor retardation, and epilepsy. Analysis of the clinical features and genetics of DEE45 may be helpful in complementing genotype-phenotype studies. Case presentation: We collected peripheral blood samples from the affected children and parents and extracted genomic DNA. Whole exome sequencing (WES) was utilized to identify the underlying disease-causing variant. WES showed that the prior carried a heterozygous variant c.686C > T p.(Ala229Val) in exon 7 of the GABRB1 (NM_000812.4), and no variant was detected in either parental sample. The child has DEE45. Conclusion: The variant c.686C > T of the GABRB1 is a possible cause of DEE45. Gene variant analysis of the relevant family lines using WES provides effective genetic counseling for developing and regressing such patients in the clinic. However, further studies are needed to verify the pathogenic mechanism.

7.
Heliyon ; 10(5): e26912, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38455531

RESUMEN

Objectives: Methylmalonic acidemia (MMA) is a rare inborn genetic disorder that is characterized by increased levels of methylmalonic acid in blood plasma and urine. Isolated methylmalonic acidemia is one of the most common types of MMA and is caused by mutations in the gene encoding methyl-malonyl coenzyme A mutase (MMUT). In this study, we investigated the possible mechanisms underlying the symptoms of isolated MMA in a patient by molecular analysis. Methods: PCR amplification and Sanger sequencing analysis was performed to identify variants in the MMUT gene in the proband and his family. Furthermore, minigene constructs were generated to validate the splicing defects in the MMUT gene variant identified in the proband. Results: The 3-year-old patient was admitted to the hospital with symptoms of MMA, including fever, convulsions, and vomiting. He showed metabolic acidosis, high levels of methylmalonic acid in blood and urine, and normal blood homocysteine levels. Genetic analysis demonstrated that the patient was a compound heterozygous carrier of two variants in the MMUT gene: a missense c.278G > A variant that has already been reported in a patient with the severe mut° phenotype; and a novel splice site variant c.2125-2A > G. RT-PCR analysis showed that, while the novel variant clearly alters splicing, a minor amount of a full-length transcript is generated, suggesting that a wild-type protein may be produced although at a lower quantitative level. The patient's condition improved after treatment with vitamin B12. Serious complications were not reported during follow-up at age 5. Conclusions: We identified a novel splice site variant that partially disrupts normal splicing of the MMUT pre-mRNA. Production of a reduced amount of full-length transcript is responsible for the mild clinical phenotype observed in this patient. Functional studies have proven useful in exploring the genotype-phenotype association and in providing guidance for the genetic diagnosis of MMA.

8.
Mol Genet Genomic Med ; 12(4): e2400, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38546032

RESUMEN

BACKGROUND: Phosphoserine aminotransferase deficiency (PSATD) is an autosomal recessive disorder associated with hypertonia, psychomotor retardation, and acquired microcephaly. Patients with PSATD have low concentrations of serine in plasma and cerebrospinal fluid. METHODS: We reported a 2-year-old female child with developmental delay, dyskinesia, and microcephaly. LC-MS/MS was used to detect amino acid concentration in the blood and whole-exome sequencing (WES) was used to identify the variants. PolyPhen-2 web server and PyMol were used to predict the pathogenicity and changes in the 3D model molecular structure of protein caused by variants. RESULTS: WES demonstrated compound heterozygous variants in PSAT1, which is associated with PSATD, with a paternal likely pathogenic variant (c.235G>A, Gly79Arg) and a maternal likely pathogenic variant (c.43G>C, Ala15Pro). Reduced serine concentration in LC-MS/MS further confirmed the diagnosis of PSATD in this patient. CONCLUSIONS: Our findings demonstrate the importance of WES combined with LC-MS/MS reanalysis in the diagnosis of genetic diseases and expand the PSAT1 variant spectrum in PSATD. Moreover, we summarize all the cases caused by PSAT1 variants in the literature. This case provides a vital reference for the diagnosis of future cases.


Asunto(s)
Microcefalia , Trastornos Psicomotores , Convulsiones , Transaminasas , Preescolar , Femenino , Humanos , Cromatografía Liquida , Secuenciación del Exoma , Cromatografía Líquida con Espectrometría de Masas , Microcefalia/genética , Microcefalia/diagnóstico , Serina/genética , Espectrometría de Masas en Tándem , Transaminasas/deficiencia
9.
Glob Med Genet ; 11(1): 25-28, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38229969

RESUMEN

Background Aminoacyl-tRNA synthetases (ARSs) are evolutionarily conserved enzymes that ensure the accuracy of the translation process. Isoleucyl-tRNA synthetase 2 ( IARS2 ) gene is a type of ARS that encodes mitochondrial isoleucine-tRNA synthetase. Pathogenic variants in the IARS2 gene are associated with mitochondrial disease which involves several patients presenting broad clinical phenotypes. These clinical phenotypes include West syndrome, Leigh syndrome, and Cataract, growth hormone deficiency, sensory neuropathy, sensorineural hearing loss, and skeletal dysplasia syndrome. Only 29 cases have been reported worldwide. The patient manifested recurrent convulsions, and specific clinical manifestations included electrolyte disorders and recurrent infections. Methods Whole-exome sequencing was performed on the child with West syndrome. Three-dimensional structure reconstruction and thermodynamic stability prediction were performed to further analyze the relationship between variation and phenotype. Conclusion This study further expands the clinical spectrum of IARS2 pathogenic variants. The case summaries help raise clinical awareness of IARS2 -associated disease and reduce misdiagnosis. Result In this report, a 13-month-old girl was diagnosed with West syndrome and Leigh syndrome for 7 months. Compound heterozygous variants in the IARS2 gene (NM_018060.4), c.2450G>A (Arg817His) and copy number variation (NC_000001. 11: g. (220267549_220284289) del), were detected by WES. This study further expands the clinical spectrum of IARS2 pathogenic variants. The case summaries help raise clinical awareness of IARS2-associated disease and reduce misdiagnosis.

10.
Glob Med Genet ; 11(1): 13-19, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38229971

RESUMEN

Background Variants of ubiquitin-specific protease 7 ( USP7 ) gene in humans are associated with a neurodevelopmental disorder-Hao-Fountain syndrome, its core symptoms including developmental delay, intellectual disability, and speech delay. Other variable symptoms can affect multiple systems. In present study, we report two patients with core features from two unrelated consanguineous families originating from the Tianjin Children's Hospital. Methods and Results Genomic DNA was extracted from the peripheral blood samples collected from the probands with their family members and whole-exome sequencing (WES) was used to detect the pathogenic genes in the probands. Suspected variants were subsequently validated by Sanger sequencing. In family 1, WES revealed that the proband carried the de novo variant c.2697A > C (p.Leu899Phe) in USP7 (NM_003470.3). In family 2, WES identified the variant c.3305A > C (p.Asn1102Thr) in USP7 (NM_003470.3) from the proband. Conclusion We reported two cases of Hao-Fountain syndrome caused by novel USP7 variants. In addition, we report the first case of mosaicism with a USP7 variant in Chinese family. Our findings demonstrate the importance of WES in diagnosis of genetic diseases and expands the USP7 variants spectrum in Hao-Fountain syndrome. Moreover, we summarize the cases caused by USP7 variants in the literature. Our study can provide a vital reference for the diagnosis of future cases.

11.
Glob Med Genet ; 11(1): 20-24, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38229970

RESUMEN

Introduction CEP152 encodes protein Cep152, which associates with centrosome function. The lack of Cep152 can cause centrosome duplication to fail. CEP152 mutates, causing several diseases such as Seckel syndrome-5 and primary microencephaly-9. Methods In this study, we reported a patient diagnosed with epilepsy in Tianjin Children's Hospital. We performed clinical examination and laboratory test, and whole-exome sequencing was performed for the proband's and his parents' peripheral blood. The suspected compound-heterozygous variant in the CEP152 gene was verified by Sanger sequencing and quantitative real-time polymerase chain reaction technology. Results We discovered three variants-two of them from CEP152 and one from HPD . The result showed the variants in CEP152 only. The patient presented with seizures frequently. Sanger sequencing showed two novel variants in CEP152 are in exon26 (NM_014985.3 c.3968C > A p.Ser1323*) and in exon16 (NM_014985.3 c.2034_2036del p.Tyr678*). Conclusions We reported a novel compound-heterozygous variant in the CEP152 gene in this study. Most of the phenotypes are Seckel syndrome and primary microencephaly, and the novel variant may cause an atypical phenotype that is epilepsy.

12.
J Atten Disord ; : 10870547231222219, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38166458

RESUMEN

BACKGROUND: Lipid metabolism plays an essential role in nervous system development. Cholesterol deficiency leads to a variety of neurodevelopmental disorders, such as autism spectrum disorder and fragile X syndrome. There have been a lot of efforts to search for biological markers associated with and causal to ADHD, among which lipid is one possible etiological factor that is quite widely studied. We aimed to evaluate the causal relationship between lipids traits, lipid-lowering drugs, and attention deficit hyperactivity disorder (ADHD) outcomes using Mendelian randomization (MR) studies. METHODS: We used summary data from genome-wide association studies to explore the causal relationships between circulating lipid-related traits and ADHD. Then, quantitative trait loci for the expression of lipid-lowering drug target genes and genetic variants associated with lipid traits were extracted. Summary-data-based MR and inverse-variance-weighted MR (IVW-MR) were used to investigate the correlation between the expression of these drug-target genes and ADHD. RESULTS: After rigorous screening, 939 instrumental variables were finally included for univariable mendelian randomization analysis. However, there is no correlation between lipid profile and ADHD risk. Drug target analysis by IVW-MR method observed that APOB-mediated low-density lipoprotein cholesterol was associated with lower ADHD risk (odds ratio [OR] = 0.90, 95% confidence interval [CI] [0.84, 0.97]; p = .007), whereas LPL-mediated triglycerides levels were associated with a higher risk of ADHD (OR = 1.13, 95% CI [1.06, 1.21]; p < .001). CONCLUSION: Our results suggest that APOB gene and LPL gene may be candidate drug target genes for the treatment of ADHD.

13.
Clin Chim Acta ; 554: 117795, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38262496

RESUMEN

BACKGROUND: Hematuria is a common condition in clinical practice of pediatric patients. It is related to a wide spectrum of disorders and has high heterogeneity both clinically and genetically, which contributes to challenges of diagnosis and lead many pediatric patients with hematuria not to receive accurate diagnosis and early management. METHODS: In this single center study, 42 children with hematuria were included in Tianjin Children's Hospital between 2019 and 2020. We analyzed the clinical information and performed WES (Whole exome sequencing) for all cases. Then the classification of identified variants was performed according to the American College of Medical Genetics and Genomics (ACMG) guidelines for interpreting sequence variants. For the fragment deletion, qPCR was performed to validate and confirm the inherited pattern. RESULTS: For the 42 patients, 16 cases had gross hematuria and 26 had microscopic hematuria. Molecular genetic causes were uncovered in 9 (21.4%) children, including 7 with Alport syndrome (AS), one with polycystic nephropathy and one with lipoprotein glomerulopathy. The genetic causes for other patients were not related with hematuria. CONCLUSIONS: WES is a rapid and effective way to evaluate patients with hematuria. The analysis of genotype-phenotype correlations of patients with AS indicated that severe variants were associated with early kidney failure. Secondary findings were not rare in Chinese children, thus the clinician should pay more attention to the clinical interpretation of sequencing results and properly interaction with patients and their family.


Asunto(s)
Hematuria , Enfermedades Renales , Niño , Humanos , Hematuria/diagnóstico , Hematuria/genética , Secuenciación del Exoma , Genómica , Estudios de Asociación Genética
14.
Neuropharmacology ; 244: 109802, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38043643

RESUMEN

Schizophrenia (SCZ) is a heterogeneous psychiatric disorder marked by impaired thinking, emotions, and behaviors. Studies have suggested a strong connection between SCZ and Alzheimer's disease (AD), however, controversies exist and the underlying mechanisms linking these two disorders remain largely unknown. Therefore, systematic studies of SCZ- and AD-related genes will provide valuable insights into the molecular features of these two diseases and their comorbidities. In this study, we obtained 331 SCZ-related genes, 650 AD-related genes, 65 shared genes between SCZ and AD. Enrichment analysis shown that these 65 shared genes were mainly involved in cognition, neural development, synaptic transmission, drug reactions, metabolic processes and immune related processes, suggesting a complex mechanism for the co-existence of SCZ and AD. In addition, we performed pathway enrichment analysis and found a total of 57 common pathways between SCZ and AD, which could be largely grouped into three modules: immune module, neurodevelopment module and cancer module. We eventually identified the potential disease-related genes whose interactions provide clues to the overlapping symptoms between SCZ and AD.


Asunto(s)
Enfermedad de Alzheimer , Esquizofrenia , Humanos , Esquizofrenia/genética , Esquizofrenia/metabolismo , Enfermedad de Alzheimer/genética , Transmisión Sináptica , Comorbilidad
15.
Biochem Genet ; 2023 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-37740860

RESUMEN

Aicardi-Goutières syndrome 6 (AGS6) is a serious auto-immunization-associated acute neurologic decompensation. AGS6 manifests as acute onset of severe generalized dystonia of limbs and developmental regression secondary to febrile illness mostly. Dyschromatosis symmetrica hereditaria (DSH), as pigmentary genodermatosis, is a characterized mixture of hyperpigmented and hypopigmented macules. Both AGS6 and DSH are associated with ADAR1 pathogenic variants. To explore the etiology of a proband with developmental regression with mixture of hyperpigmentation and hypopigmentation macules, we used the trio-WES. Later, to clarify the association between variants and diseases, we used guidelines of ACMG for variants interpretation and quantitative Real-time PCR for verifying elevated expression levels of interferon-stimulated genes, separately. By WES, we detected 2 variants in ADAR1 and a variant in TSC2, respectively, were NM_001111.5:c.1096_1097del, NM_001111.5:c.518A>G, and NM_000548.5:c.1864C>T. Variants interpretation suggested that these 3 variants were both pathogenic. Expression levels of interferon-stimulated genes also elevated as expected. We verified the co-occurrence of pathogenic variants of ADAR1 and TSC2 in AGS6 patients with DSH. Our works contributed to the elucidation of ADAR1 pathogenic mechanism, given the specific pathogenic mechanism of ADAR1, and it is necessary to consider with caution when variants were found in ADAR1.

16.
Am J Med Genet A ; 191(11): 2775-2782, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37507849

RESUMEN

Mutations in the CNOT1 gene lead to an incurable rare neurological disorder mainly manifested as a clinical spectrum of intellectual disability, developmental delay, seizures, and behavioral problems. In this study, we investigated a classical splice site variant of CNOT1 (c.1343+1G>T) associated with neurodevelopmental disorders, which was a master regulator, orchestrating gene expression, RNA deadenylation, and protein ubiquitination. To link CNOT1 dysfunction with the neurodevelopmental phenotype observed in a patient, in vitro minigene assay was used to verify the effect of CNOT1 gene splice site variant c.1343+1G>T on mRNA splicing. We also explored the impact of transient transfection introducing modified U1 snRNA on correcting the splicing variant. Through minigene expression in mammalian cells, we demonstrated that the variant induced complete exon 12 skipping, which explained the patient's clinical condition and provided additional genetic diagnosis evidence for the clinical significance of the variant. Moreover, we confirmed that the aberrant splice pattern could be partially corrected by the modified U1 snRNA at the mRNA level, which provided strong evidence for the therapeutic potential of modified U1 snRNA in neutralizing the hazardous effect of incorrect splicing patterns.


Asunto(s)
Trastornos del Neurodesarrollo , Empalme del ARN , Animales , Humanos , Virulencia , Empalme del ARN/genética , ARN Nuclear Pequeño/genética , ARN , Mutación , ARN Mensajero/genética , ARN Mensajero/metabolismo , Trastornos del Neurodesarrollo/genética , Sitios de Empalme de ARN/genética , Mamíferos/genética , Mamíferos/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
18.
Mol Genet Genomic Med ; 11(8): e2197, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37204045

RESUMEN

BACKGROUND: The congenital disorder of glycosylation associated with ALG1 (ALG1-CDG) is a rare autosomal recessive disease. Due to the deficiency of ß1,4 mannosyltransferase caused by pathogenic variants in ALG1 gene, the assembly and processing of glycans in the protein glycosylation pathway are impaired, resulting in a broad clinical spectrum with multi-organ involvement. To raise awareness of clinicians for its manifestations and genotype, we here reported a new patient with a novel variant in ALG1 gene and reviewed the literature to study the genotype-phenotype correlation. METHOD: Clinical characteristics were collected, and clinical exome sequencing was used to identify the causative variants. MutationTaster, PyMol, and FoldX were used to predict the pathogenicity, changes in 3D model molecular structure of protein, and changes of free energy caused by novel variants. RESULTS: The proband was a 13-month-old Chinese Han male characterized by epileptic seizures, psychomotor development delay, muscular hypotonia, liver and cardiac involvement. Clinical exome sequencing revealed the biallelic compound heterozygosity variants, a previously reported variant c.434G>A (p.G145N, paternal) and a novel variant c.314T>A (p.V105N, maternal). The literature review found that in severe phenotypes, the incidences of clinical manifestations were significantly higher than that in mild phenotypes, including congenital nephrotic syndrome, agammaglobulinemia, and severe hydrops. Homozygous c.773C>T was a strongly pathogenic variant associated with a severe phenotype. When heterozygous for c.773C>T, patients with another variant leading to substitution in amino acids within the strongly conserved regions (c.866A>T, c.1025A>C, c.1182C>G) may cause a more severe phenotype than those within less-conserved regions (c.434G>A, c.450C>G, c.765G>A, c.1287T>A). c.1129A>G, c.1076C>T, and c.1287T>A were more likely to be associated with a mild phenotype. The assessment of disease phenotypes requires a combination of genotype and clinical manifestations. CONCLUSIONS: The case reported herein adds to the mutations identified in ALG1-CDG and a review of this literature expands the study of the phenotypic and genotypic spectrum of this disorder.


Asunto(s)
Trastornos Congénitos de Glicosilación , Masculino , Humanos , Glicosilación , Trastornos Congénitos de Glicosilación/genética , Mutación , Fenotipo , Estudios de Asociación Genética
19.
BMC Pediatr ; 23(1): 275, 2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-37259065

RESUMEN

BACKGROUND: Neonatal hyperbilirubinemia (NH) is a major cause of hospitalization after birth. Previous studies indicated that vitamin D deficiency might play an important role in NH susceptibility, but the results were controversial. Meanwhile, there has been limited description of the association between vitamin D related genes single nucleotide polymorphisms (SNP) and NH susceptibility. We aimed to investigate the vitamin D metabolic pathway genes polymorphisms and vitamin D levels with NH susceptibility. METHODS: We retrospectively analyzed the clinical data, vitamin D levels and its metabolic pathway gene polymorphisms of 187 NH neonates and 149 controls at Tianjin Children's Hospital/Tianjin University Children's Hospital between April 2019 and August 2022. Vitamin D levels were measured by liquid chromatography-tandem mass spectrometry (LC-MS/MS) method, and the genetic polymorphism of NADSYN1/DHCR7, GC, CYP2R1, CYP24A1 and CYP27B1 was detected by high resolution melting (HRM) analysis. RESULTS: The frequency of vitamin D deficiency (25(OH)D < 15 ng/mL) was significantly increased in the NH group compared to controls. TT genotype of rs12785878 and GT genotype of rs10877012 were protective factors of vitamin D deficiency and NH, and GT genotype and dominant model carriers of rs12785878 had a higher risk of severe NH than the GG genotype carriers (GT genotype: OR: 2.43; 95% CI: 1.22-4.86; P = 0.012, dominant model: OR: 1.97; 95% CI: 1.04-3.73; P = 0.037). GC gene haplotype was associated with vitamin D deficiency. No significant SNP-SNP and SNP-vitamin D levels interaction combinations were found. CONCLUSIONS: There were associations among NH, vitamin D deficiency and NADSYN1/DHCR7 and CYP27B1 polymorphisms, TT genotype of rs12785878 and GT genotype of rs10877012 could reduce the risk of vitamin D deficiency and NH. Furthermore, rs12785878 was significantly associated with severe NH.


Asunto(s)
Deficiencia de Vitamina D , Vitamina D , Niño , Recién Nacido , Humanos , Estudios Retrospectivos , 25-Hidroxivitamina D3 1-alfa-Hidroxilasa/genética , Cromatografía Liquida , Espectrometría de Masas en Tándem , Vitaminas , Deficiencia de Vitamina D/complicaciones , Deficiencia de Vitamina D/genética , Polimorfismo de Nucleótido Simple , Genotipo , Predisposición Genética a la Enfermedad
20.
Nephron ; 147(9): 572-582, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36878198

RESUMEN

Nephronophthisis is an autosomal recessive cystic kidney disease characterized by tubular injury and commonly results in kidney failure. We reported a case of 4-year-old Chinese boy presented with severe anemia, kidney, and liver dysfunction. Whole exome sequencing (WES) was performed to identify the candidate variant with a negative result initially. After complete collection of clinical information, reanalysis of WES identified a homozygous NPHP3 variant c.3813-3A>G (NM_153240.4). The effect on mRNA splicing of the intronic variant was predicted through software (three in silico splice tools). Furthermore, in vitro minigene assay was conducted to validate the predicted deleterious effects of the intronic variant. All of the splice prediction programs and minigene assay indicated that the variant had an impact on the normal splicing pattern of NPHP3. Our study confirmed the effect of the c.3813-3A>G variant on NPHP3 splicing in vitro, which gives additional evidence for the clinical significance of the variant and provides a basis for genetic diagnosis of nephronophthisis 3. In addition, we think that it is essential to reanalyze WES data after the complete clinical information collection to avoid missing some important candidate variants.


Asunto(s)
Pueblos del Este de Asia , Enfermedades Renales Poliquísticas , Masculino , Humanos , Preescolar , Secuenciación del Exoma , Mutación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA