Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Cell Death Dis ; 15(6): 441, 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38909034

RESUMEN

TBX3 behaves as a tumor suppressor or oncoprotein across cancer. However, TBX3 function remains undetermined in intrahepatic cholangiocarcinoma (iCCA), a deadly primary liver malignancy with few systemic treatment options. This study sought to investigate the impact of TBX3 on iCCA. We found that overexpression of TBX3 strongly inhibited human iCCA cell growth. In the Akt/FBXW7ΔF mouse iCCA model, overexpression of Tbx3 reduced cholangiocarcinogenesis in vivo, while inducible genetic knockout of Tbx3 accelerated iCCA growth. RNA-seq identified MAD2L1 as a downregulated gene in TBX3-overexpressing cells, and ChIP confirmed that TBX3 binds to the MAD2L1 promoter. CRISPR-mediated knockdown of Mad2l1 significantly reduced the growth of two iCCA models in vivo. Finally, we found that TBX3 expression is upregulated in ~20% of human iCCA samples, and its high expression is associated with less proliferation and better survival. MAD2L1 expression is upregulated in most human iCCA samples and negatively correlated with TBX3 expression. Altogether, our findings suggest that overexpression of TBX3 suppresses CCA progression via repressing MAD2L1 expression.


Asunto(s)
Neoplasias de los Conductos Biliares , Carcinogénesis , Colangiocarcinoma , Proteínas de Dominio T Box , Colangiocarcinoma/genética , Colangiocarcinoma/patología , Colangiocarcinoma/metabolismo , Proteínas de Dominio T Box/metabolismo , Proteínas de Dominio T Box/genética , Humanos , Animales , Ratones , Neoplasias de los Conductos Biliares/genética , Neoplasias de los Conductos Biliares/patología , Neoplasias de los Conductos Biliares/metabolismo , Carcinogénesis/genética , Carcinogénesis/patología , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Proliferación Celular
2.
Cancers (Basel) ; 12(10)2020 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-33008042

RESUMEN

The deregulation of the oxidative metabolism in cancer, as shown by the increased aerobic glycolysis and impaired oxidative phosphorylation (Warburg effect), is coordinated by genetic changes leading to the activation of oncogenes and the loss of oncosuppressor genes. The understanding of the metabolic deregulation of cancer cells is necessary to prevent and cure cancer. In this review, we illustrate and comment the principal metabolic and molecular variations of cancer cells, involved in their anomalous behavior, that include modifications of oxidative metabolism, the activation of oncogenes that promote glycolysis and a decrease of oxygen consumption in cancer cells, the genetic susceptibility to cancer, the molecular correlations involved in the metabolic deregulation in cancer, the defective cancer mitochondria, the relationships between the Warburg effect and tumor therapy, and recent studies that reevaluate the Warburg effect. Taken together, these observations indicate that the Warburg effect is an epiphenomenon of the transformation process essential for the development of malignancy.

3.
Free Radic Biol Med ; 141: 205-219, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31207288

RESUMEN

The transcriptional regulator YAP plays an important role in cancer progression and is negatively controlled by the Hippo pathway. YAP is frequently overexpressed in human cancers, including bladder cancer. Interestingly, YAP expression and activity can be inhibited by pro-oxidant conditions; moreover, YAP itself can also affect the cellular redox status through multiple mechanisms. 4-Hydroxynonenal (HNE), the most intensively studied end product of lipid peroxidation, is a pro-oxidant agent able to deplete GSH and has an anti-tumoral effect by affecting multiple signal pathways, including the down-regulation of oncogene expressions. These observations prompted us to investigate the effect of HNE on YAP expression and activity. We demonstrated that HNE inhibited YAP expression and its target genes in bladder cancer cells through a redox-dependent mechanism. Moreover, the YAP down-regulation was accompanied by an inhibition of proliferation, migration, invasion, and angiogenesis, as well as by an accumulation of cells in the G2/M phase of cell cycle and by an induction of apoptosis. We also established the YAP role in inhibiting cell viability and inducing apoptosis in HNE-treated cells by using an expression vector for YAP. Furthermore, we identified a post-translational mechanism for the HNE-induced YAP expression inhibition, involving an increase of YAP phosphorylation and ubiquitination, leading to proteasomal degradation. Our data established that HNE can post-translationally down-regulate YAP through a redox-dependent mechanism and that this modulation can contribute to determining the specific anti-cancer effects of HNE.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Aldehídos/farmacología , Regulación Neoplásica de la Expresión Génica , Procesamiento Proteico-Postraduccional , Factores de Transcripción/metabolismo , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/metabolismo , Apoptosis , Línea Celular Tumoral , Proliferación Celular , Regulación hacia Abajo , Células Endoteliales de la Vena Umbilical Humana , Humanos , Invasividad Neoplásica , Neovascularización Patológica , Oncogenes , Oxidación-Reducción , Fosfoproteínas/metabolismo , Transducción de Señal , Neoplasias de la Vejiga Urinaria/genética , Proteínas Señalizadoras YAP
4.
Medicina (Kaunas) ; 55(2)2019 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-30743998

RESUMEN

Cholangiocarcinoma (CCA) is a highly-aggressive malignancy arising from the biliary tree, characterized by a steady increase in incidence globally and a high mortality rate. Most CCAs are diagnosed in the advanced and metastatic phases of the disease, due to the paucity of signs and symptoms in the early stages. This fact, along with the poor results of the local and systemic therapies currently employed, is responsible for the poor outcome of CCA patients and strongly supports the need for novel therapeutic agents and strategies. In recent years, the introduction of next-generation sequencing technologies has opened new horizons for a better understanding of the genetic pathophysiology of CCA and, consequently, for the identification and evaluation of new treatments tailored to the molecular features or alterations progressively elucidated. In this review article, we describe the potential targets under investigation and the current molecular therapies employed in biliary tract cancers. In addition, we summarize the main drugs against CCA under evaluation in ongoing trials and describe the preliminary data coming from these pioneering studies.


Asunto(s)
Antineoplásicos Inmunológicos/uso terapéutico , Neoplasias de los Conductos Biliares/tratamiento farmacológico , Neoplasias de los Conductos Biliares/genética , Colangiocarcinoma/tratamiento farmacológico , Colangiocarcinoma/genética , Inhibidores Enzimáticos/uso terapéutico , Inmunoterapia , Terapia Molecular Dirigida , Ensayos Clínicos como Asunto , Retroalimentación Fisiológica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Transducción de Señal/efectos de los fármacos , Reparación del Gen Blanco
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA