Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 12(16)2022 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-36014653

RESUMEN

A high-luminescent, blue-light excitable europium(III) coordination complex, [Eu(µ2-OC2H5)(btfa)(NO3)(phen)]2phen (1) {btfa = benzoyl trifluoroacetone, phen = 1,10-phenantroline}, has been synthesized and investigated. The complex was characterized by infrared (IR) and photoluminescence (PL) spectroscopy. The PL emission spectra of powder samples registered in a range of 10.7-300 K exhibit characteristic metal-centered luminescence bands, assigned to internal radiative transitions of the Eu3+ ion, 5D1→7Fj and 5D0→7Fj (j = 0-4). The high-resolution spectrum of the transition 5D0→7F0 shows that it consists of two narrow components, separated by 0.96 meV, which indicates the presence in the matrix of two different sites of the Eu3+ ion. The splitting pattern of 5D0→7Fj (j = 0-4) transitions indicates that europium ions are located in a low-symmetry environment. The absolute quantum yield and the sensitization efficiency were determined to be 49.2% and 89.3%, respectively. The complex can be excited with low-cost lasers at around 405 nm and is attractive for potential applications in optoelectronics and biochemistry.

2.
Int J Mol Sci ; 22(6)2021 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-33802041

RESUMEN

The phytohormone auxin is involved in almost every process of a plant's life, from germination to plant development. Nowadays, auxin research connects synthetic chemistry, plant biology and computational chemistry in order to develop innovative and safe compounds to be used in sustainable agricultural practice. In this framework, we developed new fluorescent compounds, ethanolammonium p-aminobenzoate (HEA-pABA) and p-nitrobenzoate (HEA-pNBA), and investigated their auxin-like behavior on two main commercial vegetables cultivated in Europe, cucumber (Cucumis sativus) and tomato (Solanumlycopersicum), in comparison to the model plant Arabidopsis (Arabidopsis thaliana). Moreover, the binding modes and affinities of two organic salts in relation to the natural auxin indole-3-acetic acid (IAA) into TIR1 auxin receptor were investigated by computational approaches (homology modeling and molecular docking). Both experimental and theoretical results highlight HEA-pABA as a fluorescent compound with auxin-like activity both in Arabidopsis and the commercial cucumber and tomato. Therefore, alkanolammonium benzoates have a great potential as promising sustainable plant growth stimulators to be efficiently used in vegetable crops.


Asunto(s)
Arabidopsis/metabolismo , Bioprospección/métodos , Cucumis sativus/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Solanum lycopersicum/metabolismo , Fluorescencia , Ácidos Indolacéticos/metabolismo , Simulación del Acoplamiento Molecular , Nitrobenzoatos/metabolismo , Reguladores del Crecimiento de las Plantas/química , Proteínas de Plantas/metabolismo , Unión Proteica , Receptores de Superficie Celular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA