Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Front Bioeng Biotechnol ; 12: 1425933, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39165401

RESUMEN

The dairy industry is becoming one of the biggest sectors within the global food industry, and these industries use almost 34% of the water. The amount of water used is governed by the production process and the technologies employed in the plants. Consequently, the dairy industries generate almost 0.2-10 L of wastewater per liter of processed milk, which must be treated before being discharged into water bodies. The cultivation of microalgae in a mixotrophic regime using dairy wastewater enhances biomass growth, productivity, and the accumulation of value-added product. The generated biomass can be converted into biofuels, thus limiting the dependence on petroleum-based crude oil. To fulfill the algal biorefinery model, it is important to utilize every waste stream in a cascade loop. Additionally, the harvested water generated from algal biomass production can be recycled for further microalgal growth. Economic and sustainable wastewater management, along with proper reclamation of nutrients from dairy wastewater, is a promising approach to mitigate the problem of water scarcity. A bibliometric study revealing limited work on dairy wastewater treatment using microalgae for biofuel production. And, limited work is reported on the pretreatment of dairy wastewater via physicochemical methods before microalgal-based treatment. There are still significant gaps remains in large-scale cultivation processes. It is also crucial to discover robust strains that are highly compatible with the specific concentration of contaminants, as this will lead to increased yields and productivity for the targeted bio-product. Finally, research on reutilization of culture media in photobioreactor is necessary to augument the productivity of the entire process. Therefore, the incorporation of the microalgal biorefinery with the wastewater treatment concept has great potential for promoting ecological sustainability.

2.
Artículo en Inglés | MEDLINE | ID: mdl-39162894

RESUMEN

Lentic small water bodies (LSWBs) deteriorate owing to anthropogenic activities, such as untreated domestic and agricultural waste disposal. Moreover, different turnover mechanisms occur during different seasons, contributing to nutrient enrichment and consequent degradation of LSWBs. However, understanding their spatial, temporal, and vertical variations during different seasons is understudied. In addition, studies on the variation in water quality under varying rainfall and land-use conditions are limited. Therefore, in this study, three LSWBs located in Northern India were studied during the pre-monsoon and monsoon seasons (December 2022 to October 2023). Total nitrogen (TN), chlorophyll-a (Chl-a), total phosphorus (TP), temperature, pH, dissolved oxygen (DO), total dissolved solids (TDS), chemical oxygen demand (COD), secchi disk depth (SDD), and water level (WL) were measured monthly. Sentinel-2 and CHIRPS pentad data were used for land use, land cover classification, and rainfall analysis. The spatial analysis indicates that the seasonal shift affects the water quality distribution, especially near the inlets and at the edges. The overall concentrations of TN and TP decreased during the monsoon season; however, they increased significantly at the inlets of the LSWBs. On the other hand, the Chl-a concentration shifted towards the edges due to the inflow during the monsoon. Temporal analysis also suggests that the arrival of the monsoon lowers pH, DO, and TDS. However, the concentrations of TN and TP increased because of agricultural runoff. Chl-a and COD show distinct variations due to the individual LSWBs' local conditions. Vertical variability analysis demonstrated pH, temperature, and TN stratification during the pre-monsoon period. However, during the monsoon, stratification is less significant due to intermixing. Redundancy analysis (RDA) showed that land use and rainfall patterns affected the water quality of LSWB 1, 2, and 3 by 53.49%, 81.62%, and 92.64%, respectively. This shows that land use, land cover, and rainfall changes affect the water quality of LSWBs. This study highlights the negative impact of runoff from agricultural land use as the main factor responsible for increased nutrient levels in the LSWBs.

3.
Cureus ; 16(7): e64469, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39135823

RESUMEN

Introduction Provisional prosthetic restorations play a crucial role in dentistry by protecting dentinal tubules, offering thermal insulation, and ensuring a precise fit during dental treatments. Computer-aided design and computer-aided manufacturing (CAD/CAM) have improved polymethyl methacrylate (PMMA), enhancing its mechanical properties such as hardness and resistance compared to traditional methods. However, bacterial accumulation remains a challenge due to inherent surface roughness. This study aims to assess and compare Streptococcus mutans adhesion on milled PMMA and conventional self-cure acrylic resin, providing insights into their microbial interaction dynamics. Materials and methods This study was a prospective trial approved by the Institutional Human Ethical Committee (SRB-IHEC) (registration number: IHEC/SDC/PROSTHO-2104/24/045) and registered in the Clinical Trial Registry, India (registration number: CTRI/2024/05/068196). The study involved 20 patients requiring single crowns in the right and left molar regions. Two groups were established: Group I (the milled PMMA group) and Group II (the conventional PMMA group). Criteria for participant selection and exclusion were set. A total of 120 swab samples from the buccal mucosa and tooth surfaces were collected before tooth preparation (the baseline) at one week and three weeks. Culture for S. mutans was done, and colony-forming units were counted. Data analysis was carried out using IBM SPSS Statistics for Windows, Version 26 (Released 2019; IBM Corp., Armonk, New York, United States). An independent sample t-test was employed to compare the two materials for crowns. To analyze changes over time within each group, a repeated-measures analysis of variance (ANOVA) was conducted. When the ANOVA test indicated significance, Tukey's post-hoc test was utilized for pairwise mean comparison. The level of significance was set at P < 0.05. Results The mean colony-forming units (CFU) counts for the milled PMMA group were 4.46 ± 0.167 CFU at baseline, 4.163 ± 0.058 CFU at one week, and 3.87 ± 0.19 CFU at three weeks. The mean CFU counts for the conventional PMMA group were 4.41 ± 0.13 CFU at baseline, 4.29 ± 0.114 CFU at one week, and 4.16 ± 0.108 CFU at three weeks. At baseline (before cementation), there was no difference between milled PMMA and conventional PMMA (P = 0.578). After one week, a significant difference between milled PMMA and conventional PMMA was observed (P < 0.005). After three weeks, a significant difference between milled PMMA and conventional PMMA persisted (P < 0.005).  Conclusion There was a significant reduction in microbial adhesion in both the milled and conventional PMMA groups. However, milled PMMA demonstrated a greater decrease in microbial adhesion as compared to conventional PMMA.

4.
J Mol Model ; 30(8): 267, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39012568

RESUMEN

CONTEXT: Cyclin-dependent kinase 9 (CDK9) plays a significant role in gene regulation and RNA polymerase II transcription under basal and stimulated conditions. The upregulation of transcriptional homeostasis by CDK9 leads to various malignant tumors and therefore acts as a valuable drug target in addressing cancer incidences. Ongoing drug development endeavors targeting CDK9 have yielded numerous clinical candidate molecules currently undergoing investigation as potential CDK9 modulators, though none have yet received Food and Drug Administration (FDA) approval. METHODS: In this study, we employ in silico approaches including the molecular docking and molecular dynamics simulations for the virtual screening over the natural compounds library to identify novel promising selective CDK9 inhibitors. The compounds derived from the initial virtual screening were subsequently employed for molecular dynamics simulations and binding free energy calculations to study the compound's stability under virtual physiological conditions. The first-generation CDK inhibitor Flavopiridol was used as a reference to compare with our novel hit compound as a CDK9 antagonist. The 500-ns molecular dynamics simulation and binding free energy calculation showed that two natural compounds showed better binding affinity and interaction mode with CDK9 receptors over the reference Flavopiridol. They also showed reasonable figures in the predicted absorption, distribution, metabolism, excretion, and toxicity (ADMET) calculations as well as in computational cytotoxicity predictions. Therefore, we anticipate that the proposed scaffolds could contribute to developing potential and selective CDK9 inhibitors subjected to further validations.


Asunto(s)
Quinasa 9 Dependiente de la Ciclina , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Inhibidores de Proteínas Quinasas , Quinasa 9 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 9 Dependiente de la Ciclina/metabolismo , Quinasa 9 Dependiente de la Ciclina/química , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Humanos , Unión Proteica , Productos Biológicos/química , Productos Biológicos/farmacología , Flavonoides/química , Flavonoides/farmacología , Piperidinas
5.
Pharmaceuticals (Basel) ; 17(7)2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-39065771

RESUMEN

Head and neck cancer ranks as the sixth-most common malignancy worldwide, characterized by high mortality and recurrence rates. Research studies indicate that molecular diagnostics play a crucial role in the early detection and prognostic evaluation of these diseases. This study aimed to identify potential biomarkers for head and neck cancer and elucidate their interactions with miRNAs and possible therapeutic drugs. Four drivers, namely, FN1, IL1A, COL1A1, and MMP9, were identified using network biology and machine learning approaches. Gene set variation analysis (GSVA) showed that these genes were significantly involved in different biological processes and pathways, including coagulation, UV-response-down, apoptosis, NOTCH signaling, Wnt-beta catenin, and other signal pathways. The diagnostic value of these hub genes was validated using receiver operating characteristic (ROC) curves. The top interactive miRNAs, including miR-128-3p, miR-218-5p, miR-214-3p, miR-124-3p, miR-129-2-3p, and miR-1-3p, targeted the key genes. Furthermore, the interaction between the key genes and drugs was also identified. In summary, the key genes and miRNAs or drugs reported in this study might provide valuable information for potential biomarkers to increase the prognosis and diagnosis of head and neck cancer.

6.
Pharmaceuticals (Basel) ; 17(7)2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39065785

RESUMEN

SHP2 belongs to a cytoplasmic non-receptor protein tyrosine phosphatase class. It plays a critical role in the development of various cancers, such as gastric cancer, leukemia, and breast cancer. Thus, SHP2 has gained the interest of researchers as a potential target for inhibiting tumor cell proliferation in SHP2-dependent cancers. This study employed pharmacophore-based virtual screening, molecular docking, molecular dynamic (MD) simulations, MM/PBSA, and principal component analysis (PCA), followed by ADME prediction. We selected three potential hits from a collective database of more than one million chemical compounds. The stability of these selected hit-protein complexes was analyzed using 500 ns MD simulations and binding free energy calculations. The identified hits Lig_1, Lig_6, and Lig_14 demonstrated binding free energies of -161.49 kJ/mol, -151.28 kJ/mol, and -107.13 kJ/mol, respectively, compared to the reference molecule (SHP099) with a ΔG of -71.48 kJ/mol. Our results showed that the identified compounds could be used as promising candidates for selective SHP2 allosteric inhibition in cancer.

7.
Microbiol Spectr ; 12(8): e0047324, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-38980014

RESUMEN

Innate immune cells, such as macrophages, mount an immune response upon exposure to antigens and pathogens. Emerging evidence shows that macrophages exposed to an antigen can generate a "memory-like" response (a.k.a. trained immunity), which confers a non-specific and enhanced response upon subsequent stimulation with a second antigen/microbe. This trained immunity has been implicated in the enhanced response of macrophages against several invading pathogens. However, the association between the nature of the antigen and the corresponding immune correlate of elicited trained immunity is not fully understood. Similarly, the response of macrophages trained and restimulated with homologous stimulants to subsequent infection by pathogenic Mycobacterium tuberculosis (Mtb) remains unexplored. Here, we report the immune and metabolic profiles of trained immunity in human THP-1-derived macrophages after homologous training and restimulation with BCG, LPS, purified protein Derivative (PPD), heat-killed Mtb strains HN878 (hk-HN), and CDC1551 (hk-CDC). Furthermore, the impact of training on the autophagic and antimicrobial responses of macrophages with or without subsequent infection by clinical Mtb isolates HN878 and CDC1551 was evaluated. Results show that repeated stimulation of macrophages with different antigens displays distinct pro-inflammatory, metabolic, antimicrobial, and autophagy induction profiles. These macrophages also induce a differential antimicrobial response upon infection with clinical Mtb HN878 and CDC1551 isolates. A significantly reduced intracellular bacterial load was noted in the stimulated macrophages, which was augmented by the addition of rapamycin, an autophagy inducer. These observations suggest that the nature of the antigen and the mode of stimulation shape the magnitude and breadth of macrophage innate memory response, which impacts subsequent response to Mtb infection. IMPORTANCE: Trained immunity (a.k.a. innate memory response) is a novel concept that has been rapidly emerging as a mechanism underpinning the non-specific immunity of innate immune cells, such as macrophages. However, the association between the nature of the stimuli and the corresponding immune correlate of trained immunity is not fully understood. Similarly, the kinetics of immunological and metabolic characteristics of macrophages upon "training" by the same antigen as primary and secondary stimuli (homologous stimulation) are not fully characterized. Furthermore, the ability of antigens such as purified protein derivative (PPD) and heat-killed-Mtb to induce trained immunity remains unknown. Similarly, the response of macrophages primed and trained by homologous stimulants to subsequent infection by pathogenic Mtb is yet to be reported. In this study, we evaluated the hypothesis that the nature of the stimuli impacts the depth and breadth of trained immunity in macrophages, which differentially affects their response to Mtb infection.


Asunto(s)
Antígenos Bacterianos , Inmunidad Innata , Memoria Inmunológica , Macrófagos , Mycobacterium tuberculosis , Tuberculosis , Mycobacterium tuberculosis/inmunología , Macrófagos/inmunología , Macrófagos/microbiología , Humanos , Inmunidad Innata/inmunología , Antígenos Bacterianos/inmunología , Memoria Inmunológica/inmunología , Tuberculosis/inmunología , Tuberculosis/microbiología , Citocinas/metabolismo , Citocinas/inmunología , Autofagia/inmunología , Células THP-1
8.
J Indian Prosthodont Soc ; 24(3): 252-258, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38946508

RESUMEN

AIM: This study investigates the interaction of zirconia and polyetheretherketone (PEEK) with indirect composite in fixed dental prostheses. This investigation aimed to assess the shear bond strength (SBS) and color stability of zirconia and PEEK before and after aging, addressing critical concerns in dental restorative applications. SETTINGS AND DESIGN: The current in vitro study used 96 samples, 48 of which were divided into two groups, zirconia and PEEK, before and after thermocycling. A dual-axis chewing simulator was used for thermocycling. SBS was measured using a universal testing machine, and color stability was checked using a reflective spectrophotometer. MATERIALS AND METHODS: Ninety-six samples were categorized into zirconia and PEEK groups, each with subgroups undergoing thermocycling. Samples were prepared using computer-aided design/computer-aided manufacturing milling and veneered with composite resin. Thermocycling involved 10,000 cycles, simulating stress levels equivalent to approximately 1 year of clinical use. SBS was assessed using standardized tests. Stereomicroscopic analysis was performed to evaluate the type of failure. Color stability of the core materials with indirect composite was done using a spectrophotometer before and after aging. STATISTICAL ANALYSIS USED: Statistical analysis included paired t-tests and independent t-tests in SPSS software. RESULTS: The results revealed that SBS values for composite on PEEK decreased from 13.86 ± 0.164 MPa before thermocycling to 13.46 ± 0.185 MPa after thermocycling, with a significant difference (P < 0.005). However, both pre- and postthermocycling values for PEEK were higher than zirconia. The t-test confirmed the lower bond strength of composite to zirconia, with a noteworthy improvement after aging. Stereomicroscopic images revealed adhesive failure for the zirconia group and mixed (adhesive and cohesive) failure for the PEEK group. ΔE values were 3.21 ± 0.127 and 2.93 ± 0.142 for zirconia and PEEK groups, respectively (P < 0.005). CONCLUSION: Within the limitations of this study, it can be deduced that PEEK is a feasible substitute for zirconia when used in conjunction with indirect composite for the fabrication of dental prostheses.


Asunto(s)
Benzofenonas , Color , Resinas Compuestas , Recubrimiento Dental Adhesivo , Cetonas , Polietilenglicoles , Polímeros , Circonio , Circonio/química , Cetonas/química , Polietilenglicoles/química , Polímeros/química , Resinas Compuestas/química , Técnicas In Vitro , Recubrimiento Dental Adhesivo/métodos , Ensayo de Materiales , Resistencia al Corte , Materiales Dentales/química , Análisis del Estrés Dental , Humanos
9.
Artículo en Inglés | MEDLINE | ID: mdl-38967482

RESUMEN

Recent discoveries of microplastics in cities, suburbs, and even remote locations, far from microplastic source regions, have raised the possibility of long-distance transmission of microplastics in many ecosystems. A little is known scientifically about the threat that it posed to the environment by microplastics. The problem's apparent size necessitates the rapid development of reliable scientific advice regarding the ecological risks of microplastics. These concerns are brought on by the lack of consistent sample and identification techniques, as well as the limited physical analysis and understanding of microplastic pollution. This review provides insight regarding some unaddressed issues about the occurrence, fate, movement, and impact of microplastics, in general, with special emphasis on primary microplastics. The approaches taken in the earlier investigations have been analyzed and different recommendations for future research have been suggested.

10.
Transgenic Res ; 33(4): 267-282, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39044015

RESUMEN

An essential aromatic plant, Pelargonium graveolens, does not grow well in areas where chromium contamination is a problem. Because of oxidative stress and the collapse of the photosynthetic system, crops frequently sustain severe damage. The production of excess ethylene, known as stress ethylene, which is detrimental to plant growth, the formation of roots, and early senescence, is also increased by heavy metal exposure. The effectiveness of the 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase gene in transgenic Pelargonium graveolens under the control of CaMV 35S promoter was investigated to lessen the stress ethylene during chromium stress. Chromium was administered as potassium dichromate (K2Cr2O7) at four distinct concentrations (100 µM, 200 µM, 300 µM, and 500 µM) to transgenic and wild-type P. graveolens and stress-induced physiological changes were monitored. Transgenic P. graveolens demonstrated greater tolerance to chromium stress than wild-type P. graveolens, as evidenced by higher leaf-relative water content, chlorophyll content, CO2 absorption, transpiration rate, stomatal conductance, proline buildup, and antioxidant activity. The L1, L5, and L7, ACC deaminase-expressing transgenic lines also show a drop in ACC content during chromium stress, which subsequently lowered ethylene synthesis. Therefore, the reported transgenic P. graveolens lines having the ACC deaminase gene could be useful resources for growing in chromium-prone regions.


Asunto(s)
Liasas de Carbono-Carbono , Pelargonium , Plantas Modificadas Genéticamente , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Pelargonium/genética , Pelargonium/crecimiento & desarrollo , Liasas de Carbono-Carbono/genética , Liasas de Carbono-Carbono/metabolismo , Estrés Fisiológico/genética , Cromo/toxicidad , Cromo/metabolismo , Etilenos/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Fotosíntesis/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Oxidativo , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de los fármacos , Clorofila/metabolismo
11.
Inorg Chem ; 63(30): 14216-14230, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39023277

RESUMEN

Despite the widespread use of phosphonates (RPO32-) in various agricultural, industrial, and household applications and the ensuing eutrophication of polluted water bodies, the capture of phosphonate ions by molecular receptors has been scarcely studied. Herein, we describe a novel approach to phosphonate binding using chemically and thermally robust supramolecular coordination assemblies of the formula [RPO3⊂{cis-CuII(µ-OH)(µ-pz)}n]2- (Cun; n = 27-31; pz = pyrazolate ion, C3H3N2-; R = aliphatic or aromatic group). The neutral receptors, termed nanojars, strongly bind phosphonate anions by a multitude of hydrogen bonds within their highly hydrophilic cavities. These nanojars can be synthesized either directly from their constituents or by depolymerization of [trans-CuII(µ-OH)(µ-pz)]∞ induced by phosphonate anions. Electrospray-ionization mass spectrometry, UV-vis and variable-temperature, paramagnetic 1H and 31P NMR spectroscopy, single-crystal X-ray diffraction, along with chemical stability studies toward NH3 and Ba2+ ions, and thermal stability studies in solution are employed to explore the binding of various phosphonate ions by nanojars. Crystallographic studies of 12 different nanojars offer unprecedented structural characterization of host-guest complexes with doubly charged RPO32- ions and reveal a new motif in nanojar chemistry, nanojar clamshells, which consist of phosphonate anion-bridged pairs of nanojars and double the phosphonate-binding capacity of nanojars.

12.
Inorg Chem ; 63(26): 12290-12298, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38874076

RESUMEN

Nanojars are a class of anion binding and extraction agents composed of a series of [Cu(µ-OH)(µ-pz)]n (pz = pyrazolate; n = 26-36) supramolecular metal-organic complexes. In contrast to other anion binding agents amenable to liquid-liquid extraction, nanojars only form by self-assembly around the target anion, and guest-free nanojar hosts cannot be isolated. An extraordinary binding strength toward highly hydrophilic anions such as carbonate and sulfate was demonstrated by the inability of Ba2+ ions to precipitate the corresponding insoluble barium salts from nanojars. Herein, we provide an additional proof for the superior robustness of the nanojar framework based on competition experiments with other transition metal pyrazolate/(hydr)oxide complexes. In addition to the mass spectrometric characterization, we present variable-temperature nuclear magnetic resonance studies with an emphasis on the influence of the paramagnetic Cu2+ centers on 1H hyperfine shifts, along with X-ray crystallographic analysis of two polymorphs of (MePh3P)2[CO3⊂{Cu(OH)(pz)}27], including the highest (cubic) symmetry nanojar crystal lattice obtained to date as well as magnetism studies for the first time. Furthermore, we provide evidence for the first molybdate-incarcerating nanojars, [MoO4⊂{Cu(µ-OH)(µ-pz)}n]2- (n = 28, 31-33), formed by rearrangement from [MoVI8O12(µ-O)9(µ-pz)6(pzH)6·3pzH] in the presence of Cu2+ ions.

13.
Artículo en Inglés | MEDLINE | ID: mdl-38847252

RESUMEN

BACKGROUND: Recently, US Food and Drug Administration (FDA) has approved calcitonin gene-related peptide receptor antagonists (rimegepant, and ubrogepant), and selective serotonin receptor agonists (lasmiditan) in the management of migraine. However, the exact safety and efficacy profile of these drugs is unclear so far. METHODS: The study's primary objective was to determine the exact safety and efficacy profile. The overall estimate was calculated in terms of risk ratios using a suitable model. The subgroup analysis was also performed to check the effect of individual drugs on the outcome, whereas sensitivity analysis was performed to check the effects of outliers on the outcome. All the analyses were performed using Rev Man 5. The drugs have shown significant improvement in efficacy parameters (pain freedom, most bothersome symptoms, phonophobia, nausea, and photophobia). RESULTS: The subgroup analysis results have shown significant improvement in all efficacy parameters in the rimegepant and ubrogepant groups. The effect of ubrogepant on safety parameters was found to be non-significant, indicating a better safety profile of ubrogepant than lasmiditan. CONCLUSION: The sensitivity analysis results have shown no effect of outliers on the efficacy parameters. Based on the available evidence, recently approved drugs are effective in the treatment of migraine, however, associated with few adverse drug reactions.

14.
Mol Neurobiol ; 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38898199

RESUMEN

Depression is one of the predominant common mental illnesses that affects millions of people of all ages worldwide. Random mood changes, loss of interest in routine activities, and prevalent unpleasant senses often characterize this common depreciated mental illness. Subjects with depressive disorders have a likelihood of developing cardiovascular complications, diabesity, and stroke. The exact genesis and pathogenesis of this disease are still questionable. A significant proportion of subjects with clinical depression display inadequate response to antidepressant therapies. Hence, clinicians often face challenges in predicting the treatment response. Emerging reports have indicated the association of depression with metabolic alterations. Metabolomics is one of the promising approaches that can offer fresh perspectives into the diagnosis, treatment, and prognosis of depression at the metabolic level. Despite numerous studies exploring metabolite profiles post-pharmacological interventions, a quantitative understanding of consistently altered metabolites is not yet established. The article gives a brief discussion on different biomarkers in depression and the degree to which biomarkers can improve treatment outcomes. In this review article, we have systemically reviewed the role of metabolomics in depression along with current challenges and future perspectives.

15.
Methods Mol Biol ; 2832: 183-203, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38869796

RESUMEN

Nitric oxide (NO) is a free radical molecule that has been known to influence several cellular processes such as plant growth, development, and stress responses. NO together with reactive oxygen species (ROS) play a role in signaling process. Due to extremely low half-life of these radicals in cellular environment, it is often difficult to precisely monitor them. Each method has some advantages and disadvantages; hence, it is important to measure using multiple methods. To interpret the role of each signaling molecule in numerous biological processes, sensitive and focused methods must be used. In addition to this complexity, these Reactive Oxygen Species (ROS) and NO react with each other leads to nitro-oxidative stress in plants. Using tomato as a model system here, we demonstrate stepwise protocols for measurement of NO by chemiluminescence, DAF fluorescence, nitrosative stress by western blot, and ROS measurement by NBT and DAB under stress conditions such as osmotic stress and Botrytis infection. While describing methods, we also emphasized on benefits, drawbacks, and broader applications of these methods.


Asunto(s)
Óxido Nítrico , Especies Reactivas de Oxígeno , Solanum lycopersicum , Estrés Fisiológico , Solanum lycopersicum/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Óxido Nítrico/metabolismo , Botrytis , Mediciones Luminiscentes/métodos , Estrés Oxidativo
16.
Plant J ; 119(4): 1920-1936, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38924321

RESUMEN

Photorespiratory serine hydroxymethyltransferases (SHMTs) are important enzymes of cellular one-carbon metabolism. In this study, we investigated the potential role of SHMT6 in Arabidopsis thaliana. We found that SHMT6 is localized in the nucleus and expressed in different tissues during development. Interestingly SHMT6 is inducible in response to avirulent, virulent Pseudomonas syringae and to Fusarium oxysporum infection. Overexpression of SHMT6 leads to larger flowers, siliques, seeds, roots, and consequently an enhanced overall biomass. This enhanced growth was accompanied by increased stomatal conductance and photosynthetic capacity as well as ATP, protein, and chlorophyll levels. By contrast, a shmt6 knockout mutant displayed reduced growth. When challenged with Pseudomonas syringae pv tomato (Pst) DC3000 expressing AvrRpm1, SHMT6 overexpression lines displayed a clear hypersensitive response which was characterized by enhanced electrolyte leakage and reduced bacterial growth. In response to virulent Pst DC3000, the shmt6 mutant developed severe disease symptoms and becomes very susceptible, whereas SHMT6 overexpression lines showed enhanced resistance with increased expression of defense pathway associated genes. In response to Fusarium oxysporum, overexpression lines showed a reduction in symptoms. Moreover, SHMT6 overexpression lead to enhanced production of ethylene and lignin, which are important components of the defense response. Collectively, our data revealed that SHMT6 plays an important role in development and defense against pathogens.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Resistencia a la Enfermedad , Etilenos , Fusarium , Glicina Hidroximetiltransferasa , Lignina , Enfermedades de las Plantas , Pseudomonas syringae , Arabidopsis/genética , Arabidopsis/microbiología , Etilenos/metabolismo , Lignina/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Pseudomonas syringae/fisiología , Fusarium/fisiología , Fusarium/patogenicidad , Enfermedades de las Plantas/microbiología , Glicina Hidroximetiltransferasa/genética , Glicina Hidroximetiltransferasa/metabolismo , Resistencia a la Enfermedad/genética , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente
17.
Food Microbiol ; 122: 104564, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38839226

RESUMEN

Botrytis cinerea is a destructive necrotrophic phytopathogen causing overwhelming diseases in more than 1400 plant species, especially fruit crops, resulting in significant economic losses worldwide. The pathogen causes rotting of fruits at both pre-harvest and postharvest stages. Aside from causing gray mold of the mature fruits, the fungus infects leaves, flowers, and seeds, which makes it a notorious phytopathogen. Worldwide, in the majority of fruit crops, B. cinerea causes gray mold. In order to effectively control this pathogen, extensive research has been conducted due to its wide host range and the huge economic losses it causes. It is advantageous to explore detection and diagnosis techniques of B. cinerea to provide the fundamental basis for mitigation strategies. Botrytis cinerea has been identified and quantified in fruit/plant samples at pre- and post-infection levels using various detection techniques including DNA markers, volatile organic compounds, qPCR, chip-digital PCR, and PCR-based nucleic acid sensors. In addition, cultural, physical, chemical, biological, and botanical methods have all been used to combat Botrytis fruit rot. This review discusses research progress made on estimating economic losses, detection and diagnosis, as well as management strategies, including cultural, physical, chemical, and biological studies on B. cinerea along with knowledge gaps and potential areas for future research.


Asunto(s)
Botrytis , Frutas , Enfermedades de las Plantas , Botrytis/genética , Enfermedades de las Plantas/microbiología , Frutas/microbiología , Productos Agrícolas/microbiología
18.
BMJ Case Rep ; 17(6)2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38914524

RESUMEN

Conventional operative dental procedures are being revisited with an approach that seeks to preserve the original tissue as much as possible. Implant dentistry has also seen the advent of various techniques which make minimal alteration to natural tissue. The flapless technique involves implant placement either through a freshly extracted socket or through a tansmucosal punch hole, without elevating mucoperiosteal flap. This paper presents a report on three cases of patient centric, conventional dental implant-based full-mouth rehabilitation, which was successfully carried out using the flapless technique, under varied clinical situations. Each case showed a favourable outcome in terms of restoration of the form and function of the patient's dentition.


Asunto(s)
Implantación Dental Endoósea , Procedimientos Quirúrgicos Mínimamente Invasivos , Rehabilitación Bucal , Humanos , Femenino , Masculino , Procedimientos Quirúrgicos Mínimamente Invasivos/métodos , Rehabilitación Bucal/métodos , Implantación Dental Endoósea/métodos , Persona de Mediana Edad , Implantes Dentales , Adulto
19.
Artículo en Inglés | MEDLINE | ID: mdl-38692838

RESUMEN

Understanding the processes that drive phenotypic diversification and underpin speciation is key to elucidating how biodiversity has evolved. Although these processes have been studied across a wide array of clades, adaptive radiations (ARs), which are systems with multiple closely related species and broad phenotypic diversity, have been particularly fruitful for teasing apart the factors that drive and constrain diversification. As such, ARs have become popular candidate study systems for determining the extent to which ecological features, including aspects of organisms and the environment, and inter- and intraspecific interactions, led to evolutionary diversification. Despite substantial past empirical and theoretical work, understanding mechanistically how ARs evolve remains a major challenge. Here, we highlight a number of understudied components of the environment and of lineages themselves, which may help further our understanding of speciation and AR. We also outline some substantial remaining challenges to achieving a detailed understanding of adaptation, speciation, and the role of ecology in these processes. These major challenges include identifying factors that have a causative impact in promoting or constraining ARs, gaining a more holistic understanding of features of organisms and their environment that interact resulting in adaptation and speciation, and understanding whether the role of these organismal and environmental features varies throughout the radiation process. We conclude by providing perspectives on how future investigations into the AR process can overcome these challenges, allowing us to glean mechanistic insights into adaptation and speciation.

20.
Artículo en Inglés | MEDLINE | ID: mdl-38710850

RESUMEN

The paper industry is a composite one constituting different types of mills, processes, and products. The paper industries consume large amounts of resources, like wood and water. These industries also create huge amounts of waste that have to be treated. In our study, 23 endophytic bacteria were isolated from Argemone mexicana, and 16 endophytic bacteria were isolated from Papaver rhoeas. Seventeen and 15 bacterial endophytes from A. mexicana and P. rhoeas, respectively, showed cellulose-degrading activity. The biochemical and molecular characterization were done for endophytic bacteria with cellulolytic activity. The consortium of cellulose-degrading endophytic bacteria from A. mexicana showed endoglucanase activity (0.462 IU/ml) and FPCase enzyme activity (0.269 IU/ml) and from P. rhoeas gave endoglucanase activity (0.439 IU/ml) and FPCase enzyme activity (0.253 IU/ml). Degraded carboxy methylcellulose and filter paper were further treated by Saccharomyces cerevisiae and bioethanol was produced. Cellulose-degrading endophytic bacteria were also tested for auxin, siderophore production, and phosphate solubilization activities. Individual cellulose-degrading endophytic bacteria with plant growth-promoting activities were used as biofertilizers, tested for plant growth-promoting activities using Basmati Pusa 1121 rice, and plant growth parameters were recorded. The degraded paper enhances the growth of rice plants. Selected bacterial endophytes and their consortia from A. mexicana and P. rhoeas were powerful cellulose degraders, which can be further employed for ethanol production and as significant biofertilizers in agriculture.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA