RESUMEN
BACKGROUND: There is a paucity of literature on the seroprevalence of SARS-CoV-2 antibodies among pediatric patients with underlying kidney disorders; few serosurveys among healthy children have shown seropositivity of 20-65% after different waves of infections. METHODS: The study had a cross-sectional design and was conducted between January 2023 and July 2023; 163 children and adolescents (1-18 years) with nephrotic syndrome and chronic kidney disease (CKD) were screened for Anti-Spike SARS-COV-2 IgG antibodies as detected by a quantitative chemiluminescence immunoassay. Children with nephrotic syndrome, both steroid sensitive (SSNS) and steroid resistant (SRNS) were enrolled during disease remission. Correlation of SARS-CoV-2 seropositivity status was done with age, gender, disease type, treatment duration, immunosuppressants, previous SARS-CoV-2 infection, and immunization status. RESULTS: Of 163 children (63.8% boys) with median age of 9 years; 101 (62%) had underlying nephrotic syndrome (61 SSNS and 40 SRNS), and 62 (38%) children had CKD. Seroprotective titers for SARS-COV2 antibodies were present in 100 (61.3%) children. The median titers for all patients were 37.1 BAU/mL; for nephrotic syndrome they were 27.1 BAU/mL and for CKD they were 76.7 BAU/mL (p = 0.0033). A total of 43 (26.4%) children had high positive antibody levels (> 200 BAU/ml). Among those with nephrotic syndrome 60.7% with SSNS and 43.5% SRNS had seropositive titers. Only 4 (2.5%) children had a history of previous COVID infection and 6 (3.7%) were vaccinated. CONCLUSIONS: In a largely unvaccinated population of children with nephrotic syndrome and CKD, 61.3% were seropositive for SARS-CoV-2 IgG antibody indicating a past asymptomatic infection; titers were significantly higher in CKD compared to nephrotic syndrome.
RESUMEN
Quorum sensing plays a vital role in the environmental and host life cycles of Vibrio cholerae. The quorum-sensing circuit involves the consorted action of autoinducers, small RNAs, and regulatory proteins to control a plethora of physiological events in this bacterium. Among the regulatory proteins, LuxO is considered a low-cell-density master regulator. It is a homolog of NtrC, a two-component response regulator. NtrC belongs to an evolving protein family that works with the alternative sigma factor σ54 to trigger gene transcription. Structurally, these proteins comprise 3 domains: a receiver domain, a central AAA+ATPase domain, and a C-terminal DNA-binding domain (DBD). LuxO communicates with its cognate promoters by employing its DNA binding domain. In the present study, we desired to identify the critical residues in the DBD of LuxO. Our combined mutagenesis and biochemical assays resulted in the identification of eleven residues that contribute significantly to LuxO regulatory function.
Asunto(s)
Proteínas Bacterianas , Vibrio cholerae , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Vibrio cholerae/genética , Vibrio cholerae/metabolismo , Dominios Proteicos , Regulación Bacteriana de la Expresión Génica , Percepción de Quorum , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/química , Regiones Promotoras Genéticas , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Aminoácidos/metabolismo , Unión Proteica , Secuencia de Aminoácidos , ADN Bacteriano/genética , ADN Bacteriano/metabolismoRESUMEN
Infants are more vulnerable to malnutrition as compared with older children. Prevalence of severe wasting in Indian infants under 6 months of age (U6M) is 14.8% (National Family Health Survey 4, 2015-2016). Weight for length z-score (WLZ) and mid-upper arm circumference (MUAC) are 2 anthropometric parameters for detecting severe acute malnutrition (SAM) in children aged 6 months to 5 years. But in infants U6M, currently no accepted MUAC criteria are present for SAM. Calculating WLZ is practically difficult and cumbersome as compared with measuring MUAC. We tried to find out whether MUAC can be used in detecting SAM in infants aged 1 to 6 months also. The area under ROC curve was computed to evaluate the accuracy of MUAC in detecting SAM (taking WLZ as reference test). Level of accuracy was found out to be "good." Optimal MUAC cut-off with best diagnostic accuracy was identified as ≤11.5 cm, using the highest Youden index of 0.55.
RESUMEN
Enhancer of zeste homolog 2 (EZH2) is a histone methyltransferase and emerging therapeutic target that is overexpressed in most castration-resistant prostate cancers and implicated as a driver of disease progression and resistance to hormonal therapies. Here we define the lineage-specific action and differential activity of EZH2 in both prostate adenocarcinoma and neuroendocrine prostate cancer (NEPC) subtypes of advanced prostate cancer to better understand the role of EZH2 in modulating differentiation, lineage plasticity, and to identify mediators of response and resistance to EZH2 inhibitor therapy. Mechanistically, EZH2 modulates bivalent genes that results in upregulation of NEPC-associated transcriptional drivers (e.g., ASCL1) and neuronal gene programs in NEPC, and leads to forward differentiation after targeting EZH2 in NEPC. Subtype-specific downstream effects of EZH2 inhibition on cell cycle genes support the potential rationale for co-targeting cyclin/CDK to overcome resistance to EZH2 inhibition.
Asunto(s)
Proteína Potenciadora del Homólogo Zeste 2 , Regulación Neoplásica de la Expresión Génica , Neoplasias de la Próstata , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Proteína Potenciadora del Homólogo Zeste 2/genética , Masculino , Humanos , Línea Celular Tumoral , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Animales , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patología , Resistencia a Antineoplásicos/genética , Diferenciación Celular , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/patología , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Ratones , Linaje de la CélulaRESUMEN
Cancer stem cells (CSCs) are pivotal in both cancer progression and the acquisition of drug resistance. MicroRNAs (miRNAs) play a crucial role in modulating CSC properties and are being explored as potential targets for therapeutic interventions. MiR-3163 is primarily known for its tumor suppressive properties in various human malignancies, with lower expression reported across different cancer types. However, its role in regulating the ovarian CSC phenotype and the underlying mechanism remain largely unknown. Here, we report a remarkable downregulation of miR-3163 in ovarian cancer stem-like cells (CSLCs). Enforced expression of miR-3163 in ovarian adherent and CSLCs, significantly disrupts the stemness phenotype. Moreover, downregulation of miR-3163 expression in ovarian cancer cells (OV2008 and OVCAR-3) inhibits the stem-like cells characterized by CD44+CD117+ expression. Sphere formation assay results reveal that overexpression of miR-3163 in ovarian cancer cells significantly inhibits spheroid formation ability, confirming the regulatory properties of miR-3163 on ovarian CSLCs. Mechanistic investigation reveals that miR-3163 depletes ovarian CSLCs via targeting SOX-2. Furthermore, we establish SOX-2 as a direct target of miR-3163 through dual-luciferase assay. Taken together, our study demonstrates that overexpression of miR-3163 could be a promising strategy for efficiently eradicating the CSC population to prevent chemoresistance and tumor relapse in ovarian cancer patients.
RESUMEN
Recent advancements in tissue engineering have witnessed luffa-derived scaffolds, exhibiting their exceptional potential in cellular proliferation, biocompatibility, appropriate interconnectivity, and biomechanical strength. In vivo studies involved implanting fabricated scaffolds subcutaneously in Wistar rats to evaluate their impact on the heart, liver, and kidneys. This approach provided a safe and minimally invasive means to evaluate scaffold compatibility with surrounding tissues. Male Wistar rats were categorized into four distinct groups, Group A, B, C, and D are referred to as 3% LC implanted scaffolds, 5% LC implanted scaffolds, control (without luffa scaffolds), and Sham (without any scaffold implantation), respectively. Histological analysis in all the groups indicated that the animal models did not exhibit any signs of inflammation or toxicity, suggesting favorable tissue response to the implanted scaffolds. Initial observations revealed elevated levels of enzymes and biomarkers in the experimental groups after a 24 h interval, including aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), bilirubin, creatine kinase-MB (CK-MB), and serum creatinine. However, these parameters normalized 3 weeks post-implantation, with no significant increase compared to the control groups, suggesting that the implanted luffa-based scaffolds did not induce adverse effects on the heart, liver, and kidneys. Furthermore, the scaffold's significant pore size and porosity enable it to release drugs, including antibacterial medications. This study demonstrates promising results, indicating excellent scaffold porosity, sustained drug release, affirming the in vivo biocompatibility, absence of inflammatory responses, and overall tissue compatibility highlighting the immense potential of these luffa-based scaffolds in various tissue engineering and regenerative medicine applications.
Asunto(s)
Luffa , Ratas Wistar , Andamios del Tejido , Animales , Andamios del Tejido/química , Masculino , Ratas , Luffa/química , Riñón/efectos de los fármacos , Hígado , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Ensayo de Materiales , Ingeniería de TejidosRESUMEN
Many studies on mosquito biology rely on laboratory-reared colonies, emphasizing the need for standardized protocols to investigate critical aspects such as disease biology, mosquito behavior, and vector control methods. While much knowledge is derived from anthropophilic species from genera like Anopheles, Aedes, and Culex, there is a growing interest in studying mosquitoes that feed on non-human hosts. This interest stems from the desire to gain a deeper understanding of the evolution of diverse host range use and host specificity. However, there is currently a limited number of comprehensive protocols for studying such species. Considering this gap, we present a protocol for rearing Uranotaenia lowii, a mosquito species specialized in feeding on anuran amphibians by eavesdropping on host-emitted sound cues. Additionally, we provide instructions for successfully shipping live specimens to promote research on this species and similar ones. This protocol helps fill the current gap in comprehensive guidelines for rearing and maintaining colonies of anuran host-biting mosquitoes. It serves as a valuable resource for researchers seeking to establish colonies of mosquito species from the Uranotaeniini tribe. Ultimately, this protocol may facilitate research on the evolutionary ecology of Culicidae, as this family has recently been proposed to have originated from a frog-feeding ancestor. Key features ⢠Rearing and maintenance of colonies of non-human host-biting mosquitoes that feed on frogs using host-emitted acoustic cues. ⢠Provides shipping guidelines aimed to enhance the establishment of colonies by new research groups and specimen exchanges between labs.
RESUMEN
Traditional three-dimensional (3D) bioprinting has always been associated with the challenge of print fidelity of complex geometries due to the gel-like nature of the bioinks. Embedded 3D bioprinting has emerged as a potential solution to print complex geometries using proteins and polysaccharides-based bioinks. This study demonstrated the Freeform Reversible Embedding of Suspended Hydrogels (FRESH) 3D bioprinting method of chitosan bioink to 3D bioprint complex geometries. 4.5% chitosan was dissolved in an alkali solvent to prepare the bioink. Rheological evaluation of the bioink described its shear-thinning nature. The power law equation was fitted to the shear rate-viscosity plot. The flow index value was found to be less than 1, categorizing the material as pseudo-plastic. The chitosan bioink was extruded into another medium, a thermo-responsive 4.5% gelatin hydrogel. This hydrogel supports the growing print structures while printing. After this, the 3D bioprinted structure was crosslinked with hot water to stabilize the structure. Using this method, we have 3D bioprinted complex biological structures like the human tri-leaflet heart valve, a section of a human right coronary arterial tree, a scale-down outer structure of the human kidney, and a human ear. Additionally, we have shown the mechanical tunability and suturability of the 3D bioprinted structures. This study demonstrates the capability of the chitosan bioink and FRESH method for 3D bioprinting of complex biological models for biomedical applications.
Asunto(s)
Bioimpresión , Quitosano , Hidrogeles , Tinta , Impresión Tridimensional , Reología , Quitosano/química , Bioimpresión/métodos , Humanos , Hidrogeles/química , Ingeniería de Tejidos/métodos , Viscosidad , Válvulas Cardíacas/fisiologíaRESUMEN
Lactose hydrolysed concentrated milk was prepared using ß-galactosidase enzyme (4.76U/mL) with a reaction period of 12 h at 4 °C. Addition of polysaccharides (5 % maltodextrin/ß-cyclodextrin) to concentrated milk either before or after lactose hydrolysis did not result in significant differences (p > 0.05) in degree of hydrolysis (% DH) of lactose and residual lactose content (%). Three different inlet temperatures (165 °C, 175 °C and 185 °C) were used for the preparation of powders which were later characterised based on physico-chemical and maillard browning characteristics. Moisture content, solubility and available lysine content of the powders decreased significantly, whereas, browning parameters i.e., browning index, 5-hydroxymethylfurfural, furosine content increased significantly (p < 0.05) with an increase in inlet air temperature. The powder was finally prepared with 5 % polysaccharide and an inlet air temperature of 185 °C which reduced maillard browning. Protein-polysaccharide interactions were identified using Fourier Transform infrared spectroscopy, fluorescence spectroscopy and determination of free amino groups in the powder samples. Maltodextrin and ß-cyclodextrin containing powder samples exhibited lower free amino groups and higher degree of graft value as compared to control sample which indicated protein-polysaccharide interactions. Results obtained from Fourier Transform infrared spectroscopy also confirmed strong protein-polysaccharide interactions, moreover a significant decrease in fluorescence intensity was also observed in the powder samples. These interactions between the proteins and polysaccharides reduced the maillard browning in powders.
Asunto(s)
Furaldehído , Lactosa , Reacción de Maillard , Leche , Polisacáridos , Polvos , Lactosa/química , Polisacáridos/química , Leche/química , Animales , Espectroscopía Infrarroja por Transformada de Fourier , Furaldehído/análogos & derivados , Furaldehído/química , beta-Galactosidasa/metabolismo , beta-Ciclodextrinas/química , Hidrólisis , Secado por Pulverización , Temperatura , Lisina/química , Lisina/análogos & derivados , Solubilidad , Espectrometría de Fluorescencia , Proteínas de la Leche/química , Manipulación de Alimentos/métodosRESUMEN
In this chapter, we have made an attempt to elucidate the relevance of hedgehog signaling pathway in tumorigenesis. Here, we have described different types of hedgehog signaling (canonical and non-canonical) with emphasis on the different mechanisms (mutation-driven, autocrine, paracrine and reverse paracrine) it adopts during tumorigenesis. We have discussed the role of hedgehog signaling in regulating cell proliferation, invasion and epithelial-to-mesenchymal transition in both local and advanced cancer types, as reported in different studies based on preclinical and clinical models. We have specifically addressed the role of hedgehog signaling in aggressive neuroendocrine tumors as well. We have also elaborated on the studies showing therapeutic relevance of the inhibitors of hedgehog signaling in cancer. Evidence of the crosstalk of hedgehog signaling components with other signaling pathways and treatment resistance due to tumor heterogeneity have also been briefly discussed. Together, we have tried to put forward a compilation of the studies on therapeutic potential of hedgehog signaling in various cancers, specifically aggressive tumor types with a perspective into what is lacking and demands further investigation.
Asunto(s)
Proteínas Hedgehog , Neoplasias , Transducción de Señal , Proteínas Hedgehog/metabolismo , Humanos , Neoplasias/metabolismo , Neoplasias/patología , Neoplasias/tratamiento farmacológico , Animales , Transición Epitelial-MesenquimalRESUMEN
In view of the increasing risk of neurodegenerative diseases, epigenetics plays a fundamental role in the field of neuroscience. Several modifications have been studied including DNA methylation, histone acetylation, histone phosphorylation, etc. Histone acetylation and deacetylation regulate gene expression, and the regular activity of histone acetyltransferases (HATs) and histone deacetylases (HDACs) provides regulatory stages for gene expression and cell cycle. Imbalanced homeostasis in these enzymes causes a detrimental effect on neurophysiological function. Intriguingly, epigenetic remodelling via histone acetylation in certain brain areas has been found to play a key role in the neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and Huntington's disease. It has been demonstrated that a number of HATs have a role in crucial brain processes such regulating neuronal plasticity and memory formation. The most recent therapeutic methods involve the use of small molecules known as histone deacetylase (HDAC) inhibitors that antagonize HDAC activity thereby increase acetylation levels in order to prevent the loss of HAT function in neurodegenerative disorders. The target specificity of the HDAC inhibitors now in use raises concerns about their applicability, despite the fact that this strategy has demonstrated promising therapeutic outcomes. The aim of this review is to summarize the cross-linking between histone modification and its regulation in the pathogenesis of neurological disorders. Furthermore, these findings also support the notion of new pharmacotherapies that target particular areas of the brain using histone deacetylase inhibitors.
Asunto(s)
Histona Acetiltransferasas , Inhibidores de Histona Desacetilasas , Histona Desacetilasas , Enfermedades Neurodegenerativas , Humanos , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/enzimología , Enfermedades Neurodegenerativas/metabolismo , Histona Desacetilasas/metabolismo , Animales , Histona Acetiltransferasas/metabolismo , Inhibidores de Histona Desacetilasas/uso terapéutico , Inhibidores de Histona Desacetilasas/farmacología , Histonas/metabolismo , Acetilación , Epigénesis GenéticaRESUMEN
INTRODUCTION: Goat milk has poorer fermentation characteristics due to the absence or only traces of αs1-casein, due to which goat yoghurt contains a less dense gel structure. Moreover, the fermentation characteristics of the milk vary between the breeds of the same species. Therefore, it becomes imperative to explore a few metabolites which could regulate the techno-functional properties of goat yoghurt. OBJECTIVES: This study was aimed at relating the metabolite profile of yoghurt prepared from milk of Barbari, an indigenous goat breed of India, and its techno-functional properties (firmness, whey syneresis, and flow behaviour) using multivariate data analysis and regression models. RESULTS: Goat yoghurt was prepared with two different total solids (TS) levels (12 and 16%) and cultures, namely, commercial culture comprising a thermophilic yoghurt culture (A) and NCDC-263 comprising a mixed yoghurt culture (B). Results demonstrated a significant difference (p < 0.05) in whey syneresis with the increase in the TS level. Flow behaviour of all yoghurt samples showed a decrease in viscosity with an increase in shear rate, which confirmed its non-Newtonian behaviour and shear thinning nature, whereas frequency sweep confirmed its viscoelastic nature. Firmness was the most affected under the influence of different TS and culture levels. It was higher (p < 0.05) for 16-A, followed by 16-3B, and minimum for 12-2B. GC-MS-based metabolomics of the yoghurt revealed a total of 102 metabolites, out of which 15 metabolites were differentially expressed (p < 0.05), including 2-hydroxyethyl palmitate, alpha-mannobiose, and myo-inositol. Multivariate data analysis revealed clear separation among groups using principal component analysis and several correlations using a correlation heat map. Further, regression analysis exhibited methylamine (0.669) and myo-inositol (0.947) with higher regression coefficients (R2 values) exceeding 0.6, thus demonstrating their significant influence on the techno-functional properties, mainly firmness, of the yogurt. CONCLUSION: In conclusion, A gas chromatography-based metabolomics approach could successfully establish a relationship between the metabolome and the techno-functional properties of the yoghurt.
RESUMEN
INRODUCTION: Mucinous cystic neoplasms are rare tumors. They may originate from either ovaries, pancreas, or other intra-abdominal sites, but rarely from the mesentery. CASE HISTORY: A 22-year-old nulliparaous woman, who had undergone laparascopic bilateral cystectomy for recurrent ovarian mass, presented with pain in abdomen, backache, and menstrual irregularities. Provisionally diagnosed as ovarian carcinoma, she underwent bilateral salpingo-oophorectomy and sigmoid colectomy. However, the histopathological examination revealed mucinous cystic neoplasm of the mesentery. DISCUSSION: Thus, complete resection of the cysts with meticulous gross and histopathological examination remains the gold standard to differentiate mucinous cystic neoplasm (MCN) of the mesentery from its mimics, especially malignant counterparts, enabling clinicians to adequately manage such patients. Here, we present a case of recurrent MCN of mesentery (mesocolon), mimicking as ovarian carcinoma confirmed on histopathological examination, in a young adult.
Asunto(s)
Mesenterio , Neoplasias Quísticas, Mucinosas y Serosas , Femenino , Humanos , Adulto Joven , Carcinoma Epitelial de Ovario , Mesenterio/cirugía , Mesenterio/patología , Recurrencia Local de Neoplasia/diagnóstico , Recurrencia Local de Neoplasia/cirugía , Recurrencia Local de Neoplasia/patología , Neoplasias Quísticas, Mucinosas y Serosas/patología , Neoplasias Ováricas/diagnóstico , Neoplasias Ováricas/cirugía , Neoplasias Ováricas/patologíaRESUMEN
Sorbitol has been the new and emerging adulterant in dairy industry. The main aim of the study was to develop a method to detect sorbitol in milk, which is not affected by other sugars, polyols and formalin. Hence, a thin layer chromatographic (TLC) method was standardized to detect the sorbitol in milk. In the study 90 s duration for the impregnation of Silica gel 60F TLC plates with Cu- ions was found suitable to resolve sorbitol as a distinct spot. The standardized conditions were (1) developing solvent system consisting of n-propanol: ethyl acetate: water (7:1:2), (2) 0.5% of potassium permanganate in 0.1 M NaOH as color developing reagent. (3) Drying temperature (65°C/ 10 min.) after spraying the color developing reagent. The limit of detection was 0.2% of added sorbitol in milk. The standardized method could also detect the sorbitol in the presence of sucrose, glucose and polyols like mannitol and maltitol. In both cow and buffalo milk samples the standardized methodology performed well in detection of sorbitol. The method also performed well in sorbitol spiked formalin preserved milk samples. This method can be an alternative to the other methods involving costly equipment in detecting adulteration of milk with sorbitol.
RESUMEN
Biogenesis of inclusion bodies (IBs) facilitates protein quality control (PQC). Canonical aggresomes execute degradation of misfolded proteins while non-degradable amyloids sequester into insoluble protein deposits. Lewy bodies (LBs) are filamentous amyloid inclusions of α-synuclein, but PQC benefits and drawbacks associated with LB-like IBs remain underexplored. Here, we report that crosstalk between filamentous LB-like IBs and aggresome-like IBs of α-synuclein (Syn-aggresomes) buffer the load, aggregation state, and turnover of the amyloidogenic protein in mouse primary neurons and HEK293T cells. Filamentous LB-like IBs possess unorthodox PQC capacities of self-quarantining α-synuclein amyloids and being degradable upon receding fresh amyloidogenesis. Syn-aggresomes equilibrate biogenesis of filamentous LB-like IBs by facilitating spontaneous degradation of α-synuclein and conditional turnover of disintegrated α-synuclein amyloids. Thus, both types of IB primarily contribute to PQC. Incidentally, the overgrown perinuclear LB-like IBs become degenerative once these are misidentified by BICD2, a cargo-adapter for the cytosolic motor-protein dynein. Microscopy indicates that microtubules surrounding the perinuclear filamentous inclusions are also distorted, misbalancing the cytoskeleton-nucleoskeleton tension leading to widespread lamina injuries. Together, nucleocytoplasmic mixing, DNA damage, and deregulated transcription of stress chaperones defeat the proteostatic purposes of the filamentous amyloids of α-synuclein.
Asunto(s)
Lámina Nuclear , alfa-Sinucleína , Animales , Humanos , Ratones , alfa-Sinucleína/metabolismo , Amiloide/metabolismo , Proteínas Amiloidogénicas/metabolismo , Células HEK293 , Cuerpos de Inclusión/metabolismo , Lámina Nuclear/metabolismo , Lámina Nuclear/patologíaRESUMEN
Goat milk has achieved significant place in human diet owing to its enormous therapeutic properties. There exists a scope of value-addition of goat milk to potentiate its health benefits by incorporating herbs and plants. Giloy (Tinospora cordifolia), a traditional medicinal plant with rich bioactive composition, can enhance the bioactive properties and shelf-life of goat milk. To this end, a study was conducted to develop shelf-stable giloy-goat milk beverage (GGB) by adding debittered giloy juice to goat milk (GM) and analyse the detailed product profile including proximate composition, bioactive properties, sensory, rheological, and structural characterisation. GGB resulted in two-fold increase (P < 0.05) in antioxidant activity and total phenolic content, thus enhancing the bioactive properties of the beverage as compared to GM. Further, increase in the particle size of GGB was observed along with components interaction, which was confirmed by FTIR, scanning electron and fluorescent microscopy. Storage stability studies indicated that bioactive properties of GGB remained unaffected (P > 0.05) by the sterilization process up to 90 days and sensory characteristics were not compromised till 105 days of storage. Therefore, the developed GGB is considered to be a shelf-stable beverage that retains its bioactive and sensory properties even after sterilization, making it a promising functional dairy product.
RESUMEN
Many large and complex deep neural networks have been shown to provide higher performance on various computer vision tasks. However, very little is known about the relationship between the complexity of the input data along with the type of noise and the depth needed for correct classification. Existing studies do not address the issue of common corruptions adequately, especially in understanding what impact these corruptions leave on the individual part of a deep neural network. Therefore, we can safely assume that the classification (or misclassification) might be happening at a particular layer(s) of a network that accumulates to draw a final correct or incorrect prediction. In this paper, we introduce a novel concept of corruption depth, which identifies the location of the network layer/depth until the misclassification persists. We assert that the identification of such layers will help in better designing the network by pruning certain layers in comparison to the purification of the entire network which is computationally heavy. Through our extensive experiments, we present a coherent study to understand the processing of examples through the network. Our approach also illustrates different philosophies of example memorization and a one-dimensional view of sample or query difficulty. We believe that the understanding of the corruption depth can open a new dimension of model explainability and model compression, where in place of just visualizing the attention map, the classification progress can be seen throughout the network.
Asunto(s)
Compresión de Datos , Redes Neurales de la Computación , AtenciónRESUMEN
Enhancer of zeste homolog 2 (EZH2) is a histone methyltransferase and emerging therapeutic target that is overexpressed in most castration-resistant prostate cancers and implicated as a driver of disease progression and resistance to hormonal therapies. Here we define the lineage-specific action and differential activity of EZH2 in both prostate adenocarcinoma (PRAD) and neuroendocrine prostate cancer (NEPC) subtypes of advanced prostate cancer to better understand the role of EZH2 in modulating differentiation, lineage plasticity, and to identify mediators of response and resistance to EZH2 inhibitor therapy. Mechanistically, EZH2 modulates bivalent genes that results in upregulation of NEPC-associated transcriptional drivers (e.g., ASCL1) and neuronal gene programs, and leads to forward differentiation after targeting EZH2 in NEPC. Subtype-specific downstream effects of EZH2 inhibition on cell cycle genes support the potential rationale for co-targeting cyclin/CDK to overcome resistance to EZH2 inhibition.
RESUMEN
Most mosquito and midge species use hearing during acoustic mating behaviors. For frog-biting species, however, hearing plays an important role beyond mating as females rely on anuran calls to obtain blood meals. Despite the extensive work examining hearing in mosquito species that use sound in mating contexts, our understanding of how mosquitoes hear frog calls is limited. Here, we directly investigated the mechanisms underlying detection of frog calls by a mosquito species specialized on eavesdropping on anuran mating signals: Uranotaenia lowii. Behavioral, biomechanical and neurophysiological analyses revealed that the antenna of this frog-biting species can detect frog calls by relying on neural and mechanical responses comparable to those of non-frog-biting species. Our findings show that in Ur. lowii, contrary to most species, males do not use sound for mating, but females use hearing to locate their anuran host. We also show that the response of the antennae of this frog-biting species resembles that of the antenna of species that use hearing for mating. Finally, we discuss our data considering how mosquitoes may have evolved the ability to tap into the communication system of frogs.