Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Sci Rep ; 14(1): 12665, 2024 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-38830927

RESUMEN

Quantum dots, which won the Nobel Prize in Chemistry, have recently gained significant attention in precision medicine due to their unique properties, such as size-tunable emission, high photostability, efficient light absorption, and vibrant luminescence. Consequently, there is a growing demand to identify new types of quantum dots from various sources and explore their potential applications as stimuli-responsive biosensors, biomolecular imaging probes, and targeted drug delivery agents. Biomass-waste-derived carbon quantum dots (CQDs) are an attractive alternative to conventional QDs, which often require expensive and toxic precursors, as they offer several merits in eco-friendly synthesis, preparation from renewable sources, and cost-effective production. In this study, we evaluated three CQDs derived from biomass waste for their potential application as non-toxic bioimaging agents in various cell lines, including human dermal fibroblasts, HeLa, cardiomyocytes, induced pluripotent stem cells, and an in-vivo medaka fish (Oryzias latipes) model. Confocal microscopic studies revealed that CQDs could assist in visualizing inflammatory processes in the cells, as they were taken up more by cells treated with tumor necrosis factor-α than untreated cells. In addition, our quantitative real-time PCR gene expression analysis has revealed that citric acid-based CQDs can potentially reduce inflammatory markers such as Interleukin-6. Our studies suggest that CQDs have potential as theragnostic agents, which can simultaneously identify and modulate inflammatory markers and may lead to targeted therapy for immune system-associated diseases.


Asunto(s)
Biomasa , Carbono , Colorantes Fluorescentes , Inflamación , Puntos Cuánticos , Puntos Cuánticos/química , Carbono/química , Humanos , Animales , Colorantes Fluorescentes/química , Células HeLa , Inflamación/metabolismo , Oryzias , Factor de Necrosis Tumoral alfa/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/citología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Fibroblastos/metabolismo , Fibroblastos/efectos de los fármacos
2.
Chem Commun (Camb) ; 59(66): 10012-10015, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37523152

RESUMEN

Graphene oxide (GO) with its unique two-dimensional structure offers an emerging platform for designing advanced gas separation membranes that allow for highly selective transport of hydrogen molecules. Nevertheless, further tuning of the interlayer spacing of GO laminates and its effect on membrane separation efficiency remains to be explored. Here, positively charged fullerene C60 derivatives are electrostatically bonded to the surface of GO sheets in order to manipulate the interlayer spacing between GO nanolaminates. The as-prepared GO-C60 membranes have a high H2 permeance of 3370 GPU (gas permeance units) and an H2/CO2 selectivity of 59. The gas separation selectivity is almost twice that of flat GO membranes because of the role of fullerene.

3.
ACS Appl Mater Interfaces ; 14(33): 37595-37607, 2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-35969637

RESUMEN

As a ubiquitous family of enzymes with high performance in converting carbon dioxide (CO2) into bicarbonate, carbonic anhydrases (CAs) sparked enormous attention for carbon capture. Nevertheless, the high cost and operational instability of CAs hamper their practical relevance, and the utility of CAs is mainly limited to aqueous applications where CO2-to-bicarbonate conversion is possible. Taking advantage of the chemical motif that endows CA-like active sites (metal-coordinated histidine), here we introduce a new line of high-performance gas separation membranes with CO2-philic behavior. We first self-assembled a histidine-based bolaamphiphile (His-Bola) molecule in the aqueous phase and coordinated the resulting entities with divalent zinc. Optimizing the supramolecular synthesis conditions ensured that the resultant nanoparticles (His-NPs) exhibit high CO2 affinity and catalytic activity. We then exploited the His-NPs as nanofillers to enhance the separation performance of Pebax MH 1657. The hydrogen-bonding interactions allowed the dispersion of His-NPs within the polymer matrix uniformly, as confirmed by microscopic, spectroscopic, and thermal analyses. The imidazole and amine functionalities of His-NPs enhanced the solubility of CO2 molecules in the polymer matrix. The CA-mimic active sites of His-NPs nanozymes, on the other hand, catalyzed the reversible hydration of CO2 molecules in humid conditions, facilitating their transport across the membranes. The resulting nanocomposite membranes displayed excellent CO2 separation performance, with a high level of stability. At a filling ratio as low as 3 wt %, we achieved a CO2 permeability of >145 Barrer and a CO2/N2 selectivity of >95 with retained performance under humid continuous gas feeds. The bio-inspired approach presented in this work offers a promising platform for designing durable and highly selective CO2 capture membranes.


Asunto(s)
Anhidrasas Carbónicas , Bicarbonatos , Dióxido de Carbono/química , Anhidrasas Carbónicas/química , Histidina , Polímeros
4.
Nat Commun ; 13(1): 2281, 2022 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-35589687

RESUMEN

Advances in microfluidic technology towards flexibility, transparency, functionality, wearability, scale reduction or complexity enhancement are currently limited by choices in materials and assembly methods. Organized microfibrillation is a method for optically printing well-defined porosity into thin polymer films with ultrahigh resolution. Here we demonstrate this method to create self-enclosed microfluidic devices with a few simple steps, in a number of flexible and transparent formats. Structural colour, a property of organized microfibrillation, becomes an intrinsic feature of these microfluidic devices, enabling in-situ sensing capability. Since the system fluid dynamics are dependent on the internal pore size, capillary flow is shown to become characterized by structural colour, while independent of channel dimension, irrespective of whether devices are printed at the centimetre or micrometre scale. Moreover, the capability of generating and combining different internal porosities enables the OM microfluidics to be used for pore-size based applications, as demonstrated by separation of biomolecular mixtures.


Asunto(s)
Microfluídica , Impresión Tridimensional , Color , Dispositivos Laboratorio en un Chip , Porosidad
5.
J Am Chem Soc ; 143(40): 16750-16757, 2021 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-34605645

RESUMEN

The conversion of CO2 into functional materials under ambient conditions is a major challenge to realize a carbon-neutral society. Metal-organic frameworks (MOFs) have been extensively studied as designable porous materials. Despite the fact that CO2 is an attractive renewable resource, the synthesis of MOFs from CO2 remains unexplored. Chemical inertness of CO2 has hampered its conversion into typical MOF linkers such as carboxylates without high energy reactants and/or harsh conditions. Here, we present a one-pot conversion of CO2 into highly porous crystalline MOFs at ambient temperature and pressure. Cubic [Zn4O(piperazine dicarbamate)3] is synthesized via in situ formation of bridging dicarbamate linkers from piperazines and CO2 and shows high surface areas (∼2366 m2 g-1) and CO2 contents (>30 wt %). Whereas the dicarbamate linkers are thermodynamically unstable by themselves and readily release CO2, the formation of an extended coordination network in the MOF lattices stabilizes the linker enough to demonstrate stable permanent porosity.

6.
RSC Adv ; 11(25): 15449-15456, 2021 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-35424034

RESUMEN

Polybutadiene-based polyurethanes with different cis/trans/1,2-vinyl microstructure contents are synthesized. The phase morphology and physical properties of the polymers are investigated using spectroscopic analysis (FTIR and Raman), differential scanning calorimetry (DSC), X-ray scattering (WAXD and SAXS) and atomic force microscopy (AFM). In addition, their gas transport properties are determined for different gases at 4 bar and 25 °C. Thermodynamic incompatibility and steric hindrance of pendant groups are the dominant factors affecting the morphology and properties of the PUs. FTIR spectra, DSC, and SAXS analysis reveal a higher extent of phase mixing in high vinyl-content PUs. Moreover, the SAXS analysis and AFM phase images indicate smaller microdomains by increasing the vinyl content. Smaller permeable soft domains as well as the lower phase separation of the PUs with higher vinyl content create more tortuous pathways for gas molecules and deteriorate the gas permeability of the membranes.

7.
Chem Commun (Camb) ; 56(38): 5111-5114, 2020 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-32292964

RESUMEN

Borohydride (BH4-)-containing coordination polymers converted CO2 into HCO2- or [BH3(OCHO)]-, whose reaction routes were affected by the electronegativity of metal ions and the coordination mode of BH4-. The reactions were investigated using thermal gravimetric analysis under CO2 gas flow, infrared spectroscopy, and NMR experiments.

8.
ACS Appl Mater Interfaces ; 12(3): 3984-3992, 2020 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-31874026

RESUMEN

Sustainable and energy-efficient molecular separation requires membranes with high gas permeability and selectivity. This work reports excellent CO2 separation performance of self-standing and thin-film mixed matrix membranes (MMMs) fabricated by embedding 2D Ti3C2Tx MXene nanosheets in Pebax-1657. The CO2/N2 and CO2/H2 separation performances of the free-standing membranes are above Robeson's upper bounds, and the performances of the thin-film composite (TFC) membranes are in the target area for cost-efficient CO2 capture. Characterization and molecular dynamics simulation results suggest that the superior performances of the Pebax-Ti3C2Tx membranes are due to the formation of hydrogen bonds between Ti3C2Tx and Pebax chains, leading to the creation of the well-formed galleries of Ti3C2Tx nanosheets in the hard segments of the Pebax. The interfacial interactions and selective Ti3C2Tx nanochannels enable fast and selective CO2 transport. Enhancement of the transport properties of Pebax-2533 and polyurethane when embedded with Ti3C2Tx further supports these findings. The ease of fabrication and high separation performance of the new TFC membranes point to their great potential for energy-efficient CO2 separation with the low cost of $29/ton separated CO2.

9.
Angew Chem Int Ed Engl ; 58(52): 19034-19040, 2019 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-31602745

RESUMEN

The effect of organic ligands on the separation performance of Zr based metal-organic framework (Zr-MOF) membranes was investigated. A series of Zr-MOF membranes with different ligand chemistry and functionality were synthesized by an in situ solvothermal method and a coordination modulation technique. The thin supported MOF layers (ca. 1 µm) showed the crystallographic orientation and pore structure of original MOF structures. The MOF membranes show excellent selectivity towards hydrogen owing to the molecular sieving effect when the bulkier linkers were used. The molecular simulation confirmed that the constricted pore apertures of the Zr-MOFs which were formed by the additional benzene rings lead to the decrease in the diffusivity of larger penetrants while hydrogen was not remarkably affected. The gas mixture separation factors of the MOF membranes reached to H2 /CO2 =26, H2 /N2 =13, H2 /CH4 =11.

10.
Chem Commun (Camb) ; 55(63): 9283-9286, 2019 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-31312827

RESUMEN

Porous coordination polymers (PCPs) were synthesized by using CO2 and metal borohydrides as precursors. Borohydrides converted CO2 into bridging ligands such as formate (HCO2-) or formylhydroborate ([BH(OCHO)3]-) which are available to construct porous architectures; one of them shows 380 m2 g-1 surface area.

11.
Chem Sci ; 10(24): 6193-6198, 2019 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-31360426

RESUMEN

Control of the reactivity of hydride (H-) in crystal structures has been a challenge because of its strong electron-donating ability and reactivity with protic species. For metal borohydrides, the dehydrogenation activity and air stability are in a trade-off, and control of the reactivity of BH4 - has been demanded. For this purpose, we synthesize a series of BH4 --based coordination polymers/metal-organic frameworks. The reactivity of BH4 - in the structures is regulated by coordination geometry and neighboring ligands, and one of the compounds [Zn(BH4)2(dipyridylpropane)] exhibits both high dehydrogenation reactivity (1.4 wt% at 179 °C) and high air stability (50 RH% at 25 °C, 7 days). Single crystal X-ray diffraction analysis reveals that H δ+···H δ- dihydrogen interactions and close packing of hydrophobic ligands are the key for the reactivity and stability. The dehydrogenation mechanism is investigated by temperature-programmed desorption, in situ synchrotron PXRD and solid-state NMR.

12.
Nature ; 570(7761): 363-367, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31217598

RESUMEN

The formation of microscopic cavities and microfibrils at stress hotspots in polymers is typically undesirable and is a contributor to material failure. This type of stress crazing is accelerated by solvents that are typically weak enough not to dissolve the polymer substantially, but which permeate and plasticize the polymer to facilitate the cavity and microfibril formation process1-3. Here we show that microfibril and cavity formation in polymer films can be controlled and harnessed using standing-wave optics to design a periodic stress field within the film4. We can then develop the periodic stress field with a weak solvent to create alternating layers of cavity and microfibril-filled polymers, in a process that we call organized stress microfibrillation. These multi-layered porous structures show structural colour across the full visible spectrum, and the colour can be tuned by varying the temperature and solvent conditions under which the films are developed. By further use of standard lithographic and masking tools, the organized stress microfibrillation process becomes an inkless, large-scale colour printing process generating images at resolutions of up to 14,000 dots per inch on a number of flexible and transparent formats5,6.

13.
ChemSusChem ; 11(16): 2744-2751, 2018 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-29808569

RESUMEN

Polyimide-based materials provide attractive chemistries for the development of gas-separation membranes. Modification of inter- and intra-chain interactions is a route to improve the separation performance. In this work, copolyimides with Tröger's base (TB) monomers are designed and synthesized. In particular, a series of copolyimides is synthesized with different contents of carboxylic acid groups (0-50 wt %) to alter the inter- and intra-chain interactions and enhance the basicity of the TB-polyimides. A detailed thermal and structural analysis is provided for the new copolyimides. Gas permeation data reveal a tunable trend in separation performance with increasing carboxylic acid group content. Importantly, this is one of the few examples of copolyimide membranes materials that show enhanced plasticization resistance to high-pressure gas feeds through physical cross-linking.

14.
ACS Appl Mater Interfaces ; 10(20): 17366-17374, 2018 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-29708720

RESUMEN

The development of thin film composite (TFC) membranes offers an opportunity to achieve the permeability/selectivity requirements for optimum CO2 separation performance. However, the durability and performance of thin film gas separation membranes are mostly challenged by weak mechanical properties and high CO2 plasticization. Here, we designed new polyurethane (PU) structures with bulky aromatic chain extenders that afford preferred mechanical properties for ultra-thin-film formation. An improvement of about 1500% in Young's modulus and 600% in hardness was observed for pentiptycene-based PUs compared to the typical PU membranes. Single (CO2, H2, CH4, and N2) and mixed (CO2/N2 and CO2/CH4) gas permeability tests were performed on the PU membranes. The resulting TFC membranes showed a high CO2 permeance up to 1400 GPU (10-6 cm3(STP) cm-2 s-1 cmHg-1) and the CO2/N2 and CO2/H2 selectivities of about 22 and 2.1, respectively. The enhanced mechanical properties of pentiptycene-based PUs result in high-performance thin membranes with the similar selectivity of the bulk polymer. The thin film membranes prepared from pentiptycene-based PUs also showed a twofold enhanced plasticization resistance compared to non-pentiptycene-containing PU membranes.

15.
RSC Adv ; 8(12): 6326-6330, 2018 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-35540415

RESUMEN

Microporous polyimides (PIM-PIs, KAUST-PIs) and polymers containing Tröger's base (TB) derivatives with improved permeability and selectivity have great importance for separation of environmental gas pairs. Despite the tremendous progress in this field, facile synthesis of microporous polymers at the industrial scale via designing new monomers is still lacking. In this study, a new potential approach for large scale synthesis of spirobisindane diamine (DAS) (3) has been reported from commercially available 5,5',6,6'-tetrahydroxy-3,3,3',3'-tetramethyl-1,1'-spirobisindane (TTSBI) and 3,4-difluoronitrobenzene. A series of DAS diamine based microporous polyimides were also synthesized. The resulting polymer membranes showed high mechanical and thermal properties with tunable gas separation performance.

16.
Biotechnol J ; 13(5): e1700571, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29266768

RESUMEN

The authors show that quiescent (Q-Cell) Escherichia coli cultures can maintain metabolic activity in the absence of growth for up to 24 h, leading to four times greater specific productivity of a model metabolite, 3-hydroxybutyrate (3HB), than a control. Q-cells can be created by using the proton ionophore indole to halt cell division of an hns mutant strain. This uncouples metabolism from cell growth and allows for more efficient use of carbon feedstocks because less metabolic effort is diverted to surplus biomass production. However, the reason for the increased productivity of cells in the quiescent state was previously unknown. In this study, proteome expression patterns between wild-type and Q-cell cultures show that Q-cells overexpress stress response proteins, which prime them to tolerate the metabolic imbalances incurred through indole addition. Metabolomic data reveal the accumulation of acetyl-coenzyme A and phosphoenolpyruvate: excellent starting points for high-value chemical production. We demonstrate the exploitation of these accumulated metabolites by engineering a simple pathway for 3HB production from acetyl-coenzyme A. Quiescent cultures produced half the cell biomass of control cultures lacking indole, but were still able to produce 39.4 g L-1 of 3HB compared to 18.6 g L-1 in the control. Q-cells therefore have great potential as a platform technology for the efficient production of a wide range of commodity and high value chemicals.


Asunto(s)
Ácido 3-Hidroxibutírico/metabolismo , Fuentes de Energía Bioeléctrica/microbiología , Escherichia coli , Indoles/farmacología , Proteoma , Ácido 3-Hidroxibutírico/análisis , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , Glucólisis , Ingeniería Metabólica/métodos , Metaboloma/efectos de los fármacos , Proteoma/efectos de los fármacos , Proteoma/metabolismo
17.
J Am Chem Soc ; 139(33): 11576-11583, 2017 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-28747050

RESUMEN

The prevalence of the condensed phase, interpenetration, and fragility of mesoporous coordination polymers (meso-PCPs) featuring dense open metal sites (OMSs) place strict limitations on their preparation, as revealed by experimental and theoretical reticular chemistry investigations. Herein, we propose a rational design of stabilized high-porosity meso-PCPs, employing a low-symmetry ligand in combination with the shortest linker, formic acid. The resulting dimeric clusters (PCP-31 and PCP-32) exhibit high surface areas, ultrahigh porosities, and high OMS densities (3.76 and 3.29 mmol g-1, respectively), enabling highly selective and effective separation of C2H2 from C2H2/CO2 mixtures at 298 K, as verified by binding energy (BE) and electrostatic potentials (ESP) calculations.

18.
Inorg Chem ; 56(15): 8744-8747, 2017 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-28714677

RESUMEN

Cubic and highly porous [Mn(2-methylimidazolate)2] (Mn-ZIF-8) was synthesized from [Mn(BH4)2·3THF]·NaBH4 under an Ar atmosphere. The structure contains rare Mn2+-4N tetrahedral geometry and has larger cell parameters, resulting in 20% larger amounts of gas uptake compared with [Zn(2-methylimidazolate)2]. A kinetically favored reaction using a reactive metal borohydride precursor is key for the construction of new metal-organic framework systems.

19.
Angew Chem Int Ed Engl ; 56(32): 9391-9395, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28580700

RESUMEN

The formation of two-dimensional (2D) oriented porous organic cage crystals (consisting of imine-based tetrahedral molecules) on various substrates (such as silicon wafers and glass) by solution-processing is reported. Insight into the crystallinity, preferred orientation, and cage crystal growth was obtained by experimental and computational techniques. For the first time, structural defects in porous molecular materials were observed directly and the defect concentration could be correlated with crystal growth rate. These oriented crystals suggest potential for future applications, such as solution-processable molecular crystalline 2D membranes for molecular separations.

20.
ACS Biomater Sci Eng ; 3(12): 3076-3082, 2017 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-33445352

RESUMEN

We developed a method for the immobilization of multiple active enzymes, allowing the production of chiral products from nonchiral substrates with recycling of expensive cofactors. Using a rapid, two-step process under nondenaturing conditions, we could preserve enzyme activity by separating the production of an immobilization scaffold from the attachment of the enzymes. The technique is applicable to a wide range of enzymes and will facilitate simple, cost-effective enzyme immobilization for research and industrial purposes. An (R)-specific poly(hydroxyalkanoate) synthase (PhaCRe from Ralstonia eutropha), an (S)-specific dehydrogenase (FadB from Pseudomonas putida), and an (R)-specific hydratase (PhaJ4Pa from P. aeruginosa) were immobilized by affinity tag-assisted binding to self-assembled antiparallel type ß-sheets with a coiled fiber structure formed from a decapeptide (P-K-F-K-I-I-E-F-E-P). The functionalized scaffolds were capable of producing poly(3-hydroxybutyrate) from ß-butyrolactone with the recycling of coenzyme A. Enzyme immobilization was confirmed by fluorescence microscopy using fusion proteins of the enzymes with fluorescent marker proteins, and activity was confirmed by spectroscopic activity assays.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA