Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
2.
J Invertebr Pathol ; 206: 108176, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39159850

RESUMEN

Insects are attacked by a diverse range of microbial pathogens in the wild. In herbivorous species, larval host plants frequently play a critical role in mediating susceptibility to infection. Characterizing such plant-mediated effects on herbivore-pathogen interactions can provide insight into patterns of infection across wild populations. In this study, we investigated the effects of host plant use by two North American butterflies, Euphydryas phaeton (Nymphalidae) and Anartia jatrophae (Nymphalidae), on entomopathogen infection across a range of three doses. Both of these herbivores recently incorporated the same exotic plant, Plantago lanceolata (Plantaginaceae), into their host range and are naturally infected by the same entomopathogen, Junonia coenia densovirus (Parvoviridae), in wild populations. We performed two factorial experiments in which E. phaeton and A. jatrophae were reared on either P. lanceolata or a native host plant [Chelone glabra (Plantaginaceae) for E. phaeton; Bacopa monnieri (Plantaginaceae) for A. jatrophae] and inoculated with either a low, medium, or high dose of the virus. In E. phaeton, the outcomes of infection were highly dose-dependent, with inoculation with higher viral doses resulting in faster time to death and greater mortality. However, neither survival nor postmortem viral burdens varied depending upon the host plant that was consumed. In contrast, host plant use had a strong effect on viral burdens in A. jatrophae, with consumption of the exotic plant appearing to enhance host resistance to infection. Together, these results illustrate the variable influences of host plant use on herbivore resistance to infection, highlighting the importance of investigating plant-herbivore relationships within a tritrophic framework.


Asunto(s)
Mariposas Diurnas , Densovirus , Animales , Mariposas Diurnas/virología , Densovirus/fisiología , Plantago/virología , Interacciones Huésped-Patógeno , Larva/virología , Larva/crecimiento & desarrollo , Herbivoria
3.
Elife ; 122024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38662411

RESUMEN

Declines in biodiversity generated by anthropogenic stressors at both species and population levels can alter emergent processes instrumental to ecosystem function and resilience. As such, understanding the role of biodiversity in ecosystem function and its response to climate perturbation is increasingly important, especially in tropical systems where responses to changes in biodiversity are less predictable and more challenging to assess experimentally. Using large-scale transplant experiments conducted at five neotropical sites, we documented the impacts of changes in intraspecific and interspecific plant richness in the genus Piper on insect herbivory, insect richness, and ecosystem resilience to perturbations in water availability. We found that reductions of both intraspecific and interspecific Piper diversity had measurable and site-specific effects on herbivory, herbivorous insect richness, and plant mortality. The responses of these ecosystem-relevant processes to reduced intraspecific Piper richness were often similar in magnitude to the effects of reduced interspecific richness. Increased water availability reduced herbivory by 4.2% overall, and the response of herbivorous insect richness and herbivory to water availability were altered by both intra- and interspecific richness in a site-dependent manner. Our results underscore the role of intraspecific and interspecific richness as foundations of ecosystem function and the importance of community and location-specific contingencies in controlling function in complex tropical systems.


Asunto(s)
Biodiversidad , Ecosistema , Herbivoria , Insectos , Clima Tropical , Animales , Insectos/fisiología , Piper/fisiología
4.
Trends Parasitol ; 40(4): 338-349, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38443305

RESUMEN

Like humans, animals use plants and other materials as medication against parasites. Recent decades have shown that the study of insects can greatly advance our understanding of medication behaviors. The ease of rearing insects under laboratory conditions has enabled controlled experiments to test critical hypotheses, while their spectrum of reproductive strategies and living arrangements - ranging from solitary to eusocial communities - has revealed that medication behaviors can evolve to maximize inclusive fitness through both direct and indirect fitness benefits. Studying insects has also demonstrated in some cases that medication can act through modulation of the host's innate immune system and microbiome. We highlight outstanding questions, focusing on costs and benefits in the context of inclusive host fitness.


Asunto(s)
Insectos , Parásitos , Animales , Humanos , Reproducción , Interacciones Huésped-Parásitos
5.
Ecology ; 105(4): e4282, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38483138

RESUMEN

Pathogens play a key role in insect population dynamics, contributing to short-term fluctuations in abundance as well as long-term demographic trends. Two key factors that influence the effects of entomopathogens on herbivorous insect populations are modes of pathogen transmission and larval host plants. In this study, we examined tritrophic interactions between a sequestering specialist lepidopteran, Euphydryas phaeton, and a viral pathogen, Junonia coenia densovirus, on its native host plant, Chelone glabra, and a novel host plant, Plantago lanceolata, to explore whether host plant mediates viral transmission, survival, and viral loads. A two-factor factorial experiment was conducted in the laboratory with natal larval clusters randomly assigned to either the native or novel host plant and crossed with either uninoculated controls or viral inoculation (20% of individuals in the cluster inoculated). Diapausing clusters were overwintered in the laboratory and checked weekly for mortality. At the end of diapause, all surviving individuals were reared to adulthood to estimate survivorship. All individuals were screened to quantify viral loads, and estimate horizontal transmission postmortem. To test for vertical transmission, adults were mated, and the progeny were screened for viral presence. Within virus-treated groups, we found evidence for both horizontal and vertical transmission. Larval clusters reared on the native host plant had slightly higher horizontal transmission. Survival probability was lower in clusters feeding on the native host plant, with inoculated groups reared on the native host plant experiencing complete mortality. Viral loads did not differ by the host plant, although viral loads decreased with increased sequestration of secondary compounds on both host plants. Our results indicate that the use of a novel host plant may confer fitness benefits in terms of survival and reduced viral transmission when larvae feeding on it are infected with this pathogen, supporting hypotheses of potential evolutionary advantages of a host range expansion in the context of tritrophic interactions.


Asunto(s)
Mariposas Diurnas , Plantago , Animales , Herbivoria , Larva , Plantas
7.
Glob Chang Biol ; 30(1): e17044, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37994481

RESUMEN

Climate change is contributing to declines of insects through rising temperatures, altered precipitation patterns, and an increasing frequency of extreme events. The impacts of both gradual and sudden shifts in weather patterns are realized directly on insect physiology and indirectly through impacts on other trophic levels. Here, we investigated direct effects of seasonal weather on butterfly occurrences and indirect effects mediated by plant productivity using a temporally intensive butterfly monitoring dataset, in combination with high-resolution climate data and a remotely sensed indicator of plant primary productivity. Specifically, we used Bayesian hierarchical path analysis to quantify relationships between weather and weather-driven plant productivity on the occurrence of 94 butterfly species from three localities distributed across an elevational gradient. We found that snow pack exerted a strong direct positive effect on butterfly occurrence and that low snow pack was the primary driver of reductions during drought. Additionally, we found that plant primary productivity had a consistently negative effect on butterfly occurrence. These results highlight mechanisms of weather-driven declines in insect populations and the nuances of climate change effects involving snow melt, which have implications for ecological theories linking topographic complexity to ecological resilience in montane systems.


Asunto(s)
Mariposas Diurnas , Nieve , Animales , Estaciones del Año , Mariposas Diurnas/fisiología , Teorema de Bayes , Tiempo (Meteorología) , Cambio Climático , Ecosistema
8.
Oecologia ; 201(4): 991-1003, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37042994

RESUMEN

Intraspecific phytochemical variation across a landscape can cascade up trophic levels, potentially mediating the composition of entire insect communities. Surprisingly, we have little understanding of the processes that regulate and maintain phytochemical variation within species, likely because these processes are complex and operate simultaneously both temporally and spatially. To assess how phytochemistry varies within species, we tested the degree to which resource availability, contrasting soil type, and herbivory generate intraspecific chemical variation in growth and defense of the tropical shrub, Piper imperiale (Piperaceae). We quantified changes in both growth (e.g., nutritional protein, above- and below-ground biomass) and defense (e.g., imide chemicals) of individual plants using a well-replicated fully factorial shade-house experiment in Costa Rica. We found that plants grown in high light, nutrient- and richer old alluvial soil had increased biomass. High light was also important for increasing foliar protein. Thus, investment into growth was determined by resource availability and soil composition. Surprisingly, we found that chemical defenses decreased in response to herbivory. We also found that changes in plant protein were more plastic compared to plant defense, indicating that constitutive defenses may be relatively fixed, and thus an adaptation to chronic herbivory that is common in tropical forests. We demonstrate that intraspecific phytochemical variation of P. imperiale is shaped by resource availability from light and soil type. Because environmental heterogeneity occurs over small spatial scales (tens of meters), herbivores may be faced with a complex phytochemical landscape that may regulate how much damage any individual plant sustains.


Asunto(s)
Bosques , Fitoquímicos , Fitoquímicos/metabolismo , Herbivoria , Plantas/metabolismo , Suelo
9.
Front Physiol ; 14: 1127670, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36909228

RESUMEN

Background: Exotic plant species represent a novel resource for invertebrates and many herbivorous insects have incorporated exotic plants into their diet. Using a new host plant can have physiological repercussions for these herbivores that may be beneficial or detrimental. In this study, we compared how using an exotic versus native host plant affected the immune system response and feeding efficiency of a specialist lepidopteran, the common buckeye (Junonia coenia: Nymphalidae, Hübner 1822). Materials and Methods: In a lab experiment, larvae were reared on either the exotic host plant, Plantago lanceolata (Plantaginaceae), or the native host plant, Mimulus guttatus (Phrymaceae). Beginning at second instar feeding efficiency data were collected every 2 days until fifth instar when immune assays were performed. Immune assays consisted of standing phenoloxidase activity, total phenoloxidase activity, and melanization. Results: Interestingly, we found that all three immune system parameters were higher on the exotic host plant compared to the native host plant. The exotic host plant also supported higher pupal weights, faster development time, greater consumption, and more efficient approximate digestibility. In contrast, the native host plant supported higher efficiency of conversion of ingested and digested food. The relationship between immunity and feeding efficiency was more complex but showed a large positive effect of greater host plant consumption on all immune parameters, particularly for the exotic host plant. While not as strong, the efficiency of conversion of digested food tended to show a negative effect on the three immune parameters. Conclusion: Overall, the exotic host plant proved to be beneficial for this specialist insect with regard to immunity and many of the feeding efficiency parameters and continued use of this host plant is predicted for populations already using it.

10.
Ecol Lett ; 26(3): 425-436, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36688250

RESUMEN

Incorporation of exotic plants into the diets of native herbivores is a common phenomenon, influencing interactions with natural enemies and providing insight into the tritrophic costs and benefits of dietary expansion. We evaluated how use of an exotic plant, Plantago lanceolata, impacted immune performance, development and susceptibility to pathogen infection in the neotropical herbivore Anartia jatrophae (Lepidoptera: Nymphalidae). Caterpillars were reared on P. lanceolata or a native plant, Bacopa monnieri, and experimentally infected with a pathogenic virus, Junonia coenia densovirus. We found that virus-challenged herbivores exhibited higher survival rates and lower viral burdens when reared on P. lanceolata compared to B. monnieri, though immune performance and development time were largely similar on the two plants. These findings reveal that use of an exotic plant can impact the vulnerability of a native herbivore to pathogen infection, suggesting diet-mediated protection against disease as a potential mechanism facilitating the incorporation of novel resources.


Asunto(s)
Mariposas Diurnas , Herbivoria , Animales , Larva , Carga Viral , Plantas
11.
Ecol Evol ; 12(3): e8723, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35342612

RESUMEN

Defense against natural enemies constitutes an important driver of herbivore host range evolution in the wild. Populations of the Baltimore checkerspot butterfly, Euphydryas phaeton (Nymphalidae), have recently incorporated an exotic plant, Plantago lanceolata (Plantaginaceae), into their dietary range. To understand the tritrophic consequences of utilizing this exotic host plant, we examined immune performance, chemical defense, and interactions with a natural entomopathogen (Junonia coenia densovirus, Parvoviridae) across wild populations of this specialist herbivore. We measured three immune parameters, sequestration of defensive iridoid glycosides (IGs), and viral infection load in field-collected caterpillars using either P. lanceolata or a native plant, Chelone glabra (Plantaginaceae). We found that larvae using the exotic plant exhibited reduced immunocompetence, compositional differences in IG sequestration, and higher in situ viral burdens compared to those using the native plant. On both host plants, high IG sequestration was associated with reduced hemocyte concentration in the larval hemolymph, providing the first evidence of incompatibility between sequestered chemical defenses and the immune response (i.e., the "vulnerable host" hypothesis) from a field-based study. However, despite this negative relationship between IG sequestration and cellular immunity, caterpillars with greater sequestration harbored lower viral loads. While survival of virus-infected individuals decreased with increasing viral burden, it ultimately did not differ between the exotic and native plants. These results provide evidence that: (1) phytochemical sequestration may contribute to defense against pathogens even when immunity is compromised and (2) herbivore persistence on exotic plant species may be facilitated by sequestration and its role in defense against natural enemies.

13.
Sci Rep ; 11(1): 17247, 2021 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-34446754

RESUMEN

Foundational hypotheses addressing plant-insect codiversification and plant defense theory typically assume a macroevolutionary pattern whereby closely related plants have similar chemical profiles. However, numerous studies have documented variation in the degree of phytochemical trait lability, raising the possibility that phytochemical evolution is more nuanced than initially assumed. We utilize proton nuclear magnetic resonance (1H NMR) data, chemical classification, and double digest restriction-site associated DNA sequencing (ddRADseq) to resolve evolutionary relationships and characterize the evolution of secondary chemistry in the Neotropical plant clade Radula (Piper; Piperaceae). Sequencing data substantially improved phylogenetic resolution relative to past studies, and spectroscopic characterization revealed the presence of 35 metabolite classes. Metabolite classes displayed phylogenetic signal, whereas the crude 1H NMR spectra featured little evidence of phylogenetic signal in multivariate tests of chemical resonances. Evolutionary correlations were detected in two pairs of compound classes (flavonoids with chalcones; p-alkenyl phenols with kavalactones), where the gain or loss of a class was dependent on the other's state. Overall, the evolution of secondary chemistry in Radula is characterized by strong phylogenetic signal of traditional compound classes and weak phylogenetic signal of specialized chemical motifs, consistent with both classic evolutionary hypotheses and recent examinations of phytochemical evolution in young lineages.

14.
J Anim Ecol ; 90(3): 628-640, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33241571

RESUMEN

Animals rely on a balance of endogenous and exogenous sources of immunity to mitigate parasite attack. Understanding how environmental context affects that balance is increasingly urgent under rapid environmental change. In herbivores, immunity is determined, in part, by phytochemistry which is plastic in response to environmental conditions. Monarch butterflies Danaus plexippus, consistently experience infection by a virulent parasite Ophryocystis elektroscirrha, and some medicinal milkweed (Asclepias) species, with high concentrations of toxic steroids (cardenolides), provide a potent source of exogenous immunity. We investigated plant-mediated influences of elevated CO2 (eCO2 ) on endogenous immune responses of monarch larvae to infection by O. elektroscirrha. Recently, transcriptomics have revealed that infection by O. elektroscirrha does not alter monarch immune gene regulation in larvae, corroborating that monarchs rely more on exogenous than endogenous immunity. However, monarchs feeding on medicinal milkweed grown under eCO2 lose tolerance to the parasite, associated with changes in phytochemistry. Whether changes in milkweed phytochemistry induced by eCO2 alter the balance between exogenous and endogenous sources of immunity remains unknown. We fed monarchs two species of milkweed; A. curassavica (medicinal) and A. incarnata (non-medicinal) grown under ambient CO2 (aCO2 ) or eCO2 . We then measured endogenous immune responses (phenoloxidase activity, haemocyte concentration and melanization strength), along with foliar chemistry, to assess mechanisms of monarch immunity under future atmospheric conditions. The melanization response of late-instar larvae was reduced on medicinal milkweed in comparison to non-medicinal milkweed. Moreover, the endogenous immune responses of early-instar larvae to infection by O. elektroscirrha were generally lower in larvae reared on foliage from aCO2 plants and higher in larvae reared on foliage from eCO2 plants. When grown under eCO2 , milkweed plants exhibited lower cardenolide concentrations, lower phytochemical diversity and lower nutritional quality (higher C:N ratios). Together, these results suggest that the loss of exogenous immunity from foliage under eCO2 results in increased endogenous immune function. Animal populations face multiple threats induced by anthropogenic environmental change. Our results suggest that shifts in the balance between exogenous and endogenous sources of immunity to parasite attack may represent an underappreciated consequence of environmental change.


Asunto(s)
Asclepias , Mariposas Diurnas , Animales , Dióxido de Carbono , Herbivoria , Interacciones Huésped-Parásitos , Inmunidad
15.
J Insect Sci ; 20(5)2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-33089871

RESUMEN

An important goal of disease ecology is to understand trophic interactions influencing the host-pathogen relationship. This study focused on the effects of diet and immunity on the outcome of viral infection for the polyphagous butterfly, Vanessa cardui Linnaeus (Lepidoptera: Nymphalidae) (painted lady). Specifically, we aimed to understand the role that larval host plants play when fighting a viral pathogen. Larvae were orally inoculated with the entomopathogenic virus, Junonia coenia densovirus (JcDV) (Parvovirididae: Densovirinae, Lepidopteran Potoambidensovirus 1) and reared on two different host plants (Lupinus albifrons Bentham (Fabales: Fabaceae) or Plantago lanceolata Linnaeus (Lamiales: Plantaginaceae)). Following viral infection, the immune response (i.e., phenoloxidase [PO] activity), survival to adulthood, and viral load were measured for individuals on each host plant. We found that the interaction between the immune response and survival of the viral infection was host plant dependent. The likelihood of survival was lowest for infected larvae exhibiting suppressed PO activity and feeding on P. lanceolata, providing some evidence that PO activity may be an important defense against viral infection. However, for individuals reared on L. albifrons, the viral infection had a negligible effect on the immune response, and these individuals also had higher survival and lower viral load when infected with the pathogen compared to the controls. Therefore, we suggest that host plant modifies the effects of JcDV infection and influences caterpillars' response when infected with the virus. Overall, we conclude that the outcome of viral infection is highly dependent upon diet, and that certain host plants can provide protection from pathogens regardless of immunity.


Asunto(s)
Mariposas Diurnas/virología , Densovirus , Dieta , Monofenol Monooxigenasa/metabolismo , Animales , Mariposas Diurnas/inmunología , Mariposas Diurnas/metabolismo , Densovirus/patogenicidad , Interacciones Microbiota-Huesped , Inmunidad/fisiología , Larva/inmunología , Larva/metabolismo , Larva/virología , Plantas , Análisis de Supervivencia , Carga Viral , Virosis/inmunología
16.
Mol Ecol ; 28(22): 4839-4841, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31713935

RESUMEN

If there was any doubt of the primary role that plant secondary metabolites play in host-parasite co-evolution, the "From the Cover" paper by Tan et al. (2019) featured in this issue of Molecular Ecology will lay these doubts to rest. The group's previous work on monarch butterflies (Danaus plexippus) infected with the protozoan pathogen Ophryocystis elektroscirrha (OE) demonstrated higher survival and lower spore load on high cardenolide-producing milkweed (Asclepias curassavica) (Figure 1a) compared with low cardenolide-producing milkweed (A. incarnata) (de Roode, Pedersen, Hunter, & Altizer, 2008) (Figure 1b). The mechanism of this protective effect is not directly clear, but a leading hypothesis is that the cardenolides confer protection through toxicity to the parasite. However, the role of the caterpillar immune system in managing this parasite is largely unknown. Novel insights into the influence of toxic plant metabolites on caterpillar immunity are explored in Tan et al. (2019). Using transcriptomics to probe this model system, the authors found that herbivore immune genes were down-regulated and detoxification genes were up-regulated when larvae were reared on the milkweed species with high cardenolide concentrations (A. curassavica). Surprisingly, immune genes were not significantly up- or down-regulated in response to protozoan infection alone. This tantalizing result suggests that sequestered plant metabolites, not immunity, is reining in protozoan infections in these larvae, and promoting survival. As the authors point out, the strategy to invest in sequestration may come at a cost, which is to the detriment of the immune response (Smilanich, Dyer, Chambers, & Bowers, 2009). However, the cost becomes worth the investment when chemical sequestration takes on an antipathogen role. The novelty of the Tan et al. (2019) paper is that they show the investment in sequestration leading to a possible divestment in immunity.


Asunto(s)
Mariposas Diurnas/genética , Plantas Medicinales/parasitología , Animales , Mariposas Diurnas/inmunología , Regulación hacia Abajo/genética , Ecología , Herbivoria/genética , Interacciones Huésped-Parásitos/genética , Interacciones Huésped-Parásitos/inmunología , Sistema Inmunológico/inmunología , Larva/genética , Parásitos/genética , Parásitos/inmunología , Regulación hacia Arriba/genética
17.
Oecologia ; 191(1): 141-152, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31367913

RESUMEN

Herbivorous insects can defend themselves against pathogens via an immune response, which is influenced by the nutritional quality and phytochemistry of the host plant. However, it is unclear how these aspects of diet interact to influence the insect immune response and what role is played by ingested foliar microbes. We examined dietary protein, phytochemistry, and the caterpillar microbiome to understand variation in immune response of the Melissa blue butterfly, Lycaeides melissa. We also asked if these factors have host plant-specific effects by measuring L. melissa immune response when reared on a recently colonized exotic host plant (Medicago sativa) as compared to the immune response on an ancestral, native host (Astragalus canadensis). L. melissa did not experience immunological benefits directly related to consumption of the novel plant M. sativa. However, we did find negative, direct effects of phytochemical diversity and negative, direct effects of diet-derived microbial diversity on constitutive immune response for caterpillars fed M. sativa, as measured by phenoloxidase activity. Foliar protein did not directly influence the immune response, but did do so indirectly by increasing weight gain. Our results highlight the important effects of host diet on caterpillar physiology and raise the possibility that foliar microbiota, despite being rapidly passed through the gut, can affect the caterpillar immune response.


Asunto(s)
Mariposas Diurnas , Microbiota , Animales , Herbivoria , Larva , Plantas
18.
Front Plant Sci ; 9: 656, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29942320

RESUMEN

Terrestrial tri-trophic interactions account for a large part of biodiversity, with approximately 75% represented in plant-insect-parasitoid interactions. Herbivore diet breadth is an important factor mediating these tri-trophic interactions, as specialisation can influence how herbivore fitness is affected by plant traits. We investigated how phytochemistry, herbivore immunity, and herbivore diet breadth mediate plant-caterpillar-parasitoid interactions on the tropical plant genus Piper (Piperaceae) at La Selva Biological station in Costa Rica and at Yanayacu Biological Station in Ecuador. We collected larval stages of one Piper generalist species, Quadrus cerealis, (Lepidoptera: Hesperiidae) and 4 specialist species in the genus Eois (Lepidoptera: Geometridae) from 15 different species of Piper, reared them on host leaf material, and assayed phenoloxidase activity as a measure of potential larval immunity. We combined these data with parasitism and caterpillar species diet breadth calculated from a 19-year database, as well as established values of phytochemical diversity calculated for each plant species, in order to test specific hypotheses about how these variables are related. We found that phytochemical diversity was an important predictor for herbivore immunity, herbivore parasitism, and diet breadth for specialist caterpillars, but that the direction and magnitude of these relationships differed between sites. In Costa Rica, specialist herbivore immune function was negatively associated with the phytochemical diversity of the Piper host plants, and rates of parasitism decreased with higher immune function. The same was true for Ecuador with the exception that there was a positive association between immune function and phytochemical diversity. Furthermore, phytochemical diversity did not affect herbivore immunity and parasitism for the more generalised herbivore. Results also indicated that small differences in herbivore diet breadth are an important factor mediating herbivore immunity and parasitism success for Eois at both sites. These patterns contribute to a growing body of literature that demonstrate strong cascading effects of phytochemistry on higher trophic levels that are dependent on herbivore specialisation and that can vary in space and time. Investigating the interface between herbivore immunity, plant chemical defence, and parasitoids is an important facet of tri-trophic interactions that can help to explain the enormous amount of biodiversity found in the tropics.

19.
J Invertebr Pathol ; 151: 102-112, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29126966

RESUMEN

Understanding the interaction between host plant chemistry, the immune response, and insect pathogens can shed light on host plant use by insect herbivores. In this study, we focused on how interactions between the insect immune response and plant secondary metabolites affect the response to a viral pathogen. Based upon prior research, we asked whether the buckeye caterpillar, Junonia coenia (Nymphalidae), which specializes on plants containing iridoid glycosides (IGs), is less able to resist the pathogenic effects of a densovirus infection when feeding on plants with high concentrations of IGs. In a fully factorial design, individuals were randomly assigned to three treatments, each of which had two levels: (1) exposed to the densovirus versus control, (2) placed on a plant species with high concentrations of IGs (Plantago lanceolata, Plantaginaceae) versus low concentrations of IGs (P. major), and (3) control versus surface sterilized to exclude surface microbes that may contribute to viral resistance. We measured phenoloxidase (PO) activity, hemocyte counts, and gut bacterial diversity (16S ribosomal RNA) during the fourth larval instar, as well as development time, pupal weight, and survival to adult. Individuals infected with the virus were immune-suppressed (as measured by PO response and hemocyte count) and developed significantly faster than virus-free individuals. Contrary to our predictions,mortality was significantly less for virus challengedindividuals reared on the high IG plant compared to the low IG plant.This suggests that plant secondary metabolites can influence survival from viral infection and may be associated with activation of PO. Removing egg microbes did not affect the immune response or survival of the larvae. In summary, these results suggest that plant secondary metabolites are important for survival against a viral pathogen. Even though the PO response was better on the high IG plant, the extent to which this result contributes to survival against the virus needs further investigation.


Asunto(s)
Mariposas Diurnas/inmunología , Mariposas Diurnas/virología , Densovirus/fisiología , Interacciones Huésped-Parásitos/inmunología , Plantago/parasitología , Animales , Larva/inmunología , Larva/virología
20.
Evolution ; 71(12): 2885-2900, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29055110

RESUMEN

The origins of evolutionary radiations are often traced to the colonization of novel adaptive zones, including unoccupied habitats or unutilized resources. For herbivorous insects, the predominant mechanism of diversification is typically assumed to be a shift onto a novel lineage of host plants. However, other drivers of diversification are important in shaping evolutionary history, especially for groups residing in regions with complex geological histories. We evaluated the contributions of shifts in host plant clade, bioregion, and elevation to diversification in Eois (Lepidoptera: Geometridae), a hyper-diverse genus of moths found throughout the Neotropics. Relationships among 107 taxa were reconstructed using one mitochondrial and two nuclear genes. In addition, we used a genotyping-by-sequencing approach to generate 4641 SNPs for 137 taxa. Both datasets yielded similar phylogenetic histories, with relationships structured by host plant clade, bioregion, and elevation. While diversification of basal lineages often coincided with host clade shifts, more recent speciation events were more typically associated with shifts across bioregions or elevational gradients. Overall, patterns of diversification in Eois are consistent with the perspective that shifts across multiple adaptive zones synergistically drive diversification in hyper-diverse lineages.


Asunto(s)
Biodiversidad , Evolución Biológica , Mariposas Nocturnas/clasificación , Mariposas Nocturnas/fisiología , Plantas , Animales , Ecosistema , Geografía , Mariposas Nocturnas/genética , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA