Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 219
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
World Allergy Organ J ; 17(6): 100904, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38966605

RESUMEN

Anaphylaxis is an acute, potentially fatal, systemic hypersensitivity reaction that warrants prompt diagnosis and management. It continues to be challenging to anticipate who may be at risk of a severe, life-threatening allergic reaction. Anaphylaxis can be caused by a range of allergens, such as certain foods, medications, latex, insect stings, etc. Cofactors that augment the severity of clinical symptoms and increase the risk of poor outcomes include exercise, stress, infectious diseases, underlying mast cell disease, active allergic disease such as asthma, advanced age, intake of certain medications, history of previous anaphylaxis, and delayed or missed administration of adrenaline. According to the European Anaphylaxis Registry, food is the major elicitor of anaphylaxis, especially eggs, cow milk, and nuts, in children and adolescents. Reaction to insect venom has also been noted in young adulthood. Early recognition of signs and symptoms and prompt treatment are crucial in anaphylaxis management to avoid serious and even fatal outcomes. It is crucial for both individuals and clinicians to identify the cause of anaphylaxis. Biomarkers of anaphylaxis, such as histamine, tryptase, platelet activation factor (PAF), chymase, carboxypeptidase A3, dipeptidyl peptidase I (DPPI), basogranulin, CCL-2, hsa-miR-451a, may be useful in diagnosis and management. The purpose of this review article is to present a comprehensive overview of current evidence and expert opinions regarding the risk factors that predispose individuals to anaphylaxis. Additionally, it provides insights into potential biomarkers and genetic markers for accurate diagnosis and management. This review underscores the significance of expert guidance in enhancing patient outcomes and enabling self-management of anaphylactic episodes.

2.
Glob Chang Biol ; 30(7): e17405, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38973563

RESUMEN

Anthropogenic activities have raised nitrogen (N) input worldwide with profound implications for soil carbon (C) cycling in ecosystems. The specific impacts of N input on soil organic matter (SOM) pools differing in microbial availability remain debatable. For the first time, we used a much-improved approach by effectively combining the 13C natural abundance in SOM with 21 years of C3-C4 vegetation conversion and long-term incubation. This allows to distinguish the impact of N input on SOM pools with various turnover times. We found that N input reduced the mineralization of all SOM pools, with labile pools having greater sensitivity to N than stable ones. The suppression in SOM mineralization was notably higher in the very labile pool (18%-52%) than the labile and stable (11%-47%) and the very stable pool (3%-21%) compared to that in the unfertilized control soil. The very labile C pool made a strong contribution (up to 60%) to total CO2 release and also contributed to 74%-96% of suppressed CO2 with N input. This suppression of SOM mineralization by N was initially attributed to the decreased microbial biomass and soil functions. Over the long-term, the shift in bacterial community toward Proteobacteria and reduction in functional genes for labile C degradation were the primary drivers. In conclusion, the higher the availability of the SOM pools, the stronger the suppression of their mineralization by N input. Labile SOM pools are highly sensitive to N availability and may hold a greater potential for C sequestration under N input at global scale.


Asunto(s)
Carbono , Nitrógeno , Microbiología del Suelo , Suelo , Suelo/química , Nitrógeno/metabolismo , Nitrógeno/análisis , Carbono/metabolismo , Carbono/análisis , Ciclo del Carbono , Dióxido de Carbono/análisis , Dióxido de Carbono/metabolismo , Isótopos de Carbono/análisis , Biomasa
3.
iScience ; 27(7): 110232, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39021785

RESUMEN

Bioenergy development is critical for achieving carbon neutrality. Biomass residues from agriculture, forest, and livestock manure provide substantial bioenergy resources in China, but their availability, climate, and economic impacts have not been evaluated systematically. Here we assess biomass sustainability, bioenergy potential, greenhouse gas emissions (GHG) reduction, and cost-effectiveness using an integrated data-modeling approach. Nationally, only 27% of biomass can be used for sustainable bioenergy production, but can contribute to significant climate change mitigation with optimized regional utilization. The annual GHG reduction can reach 1.0 Gt CO2e for bioenergy, or 1.4 Gt CO2e for bioenergy with carbon capture and storage (BECCS), which is comparable to total terrestrial ecosystem carbon sinks in China. The abatement cost varies regionally but is lower than many other carbon removal technologies. Our findings reveal region-specific bioenergy pathways that contribute to carbon neutrality, and encourage future assessments to explore factors including technological advances and carbon markets.

4.
Adv Sci (Weinh) ; : e2308176, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39024521

RESUMEN

Microbial carbon (C) use efficiency (CUE) delineates the proportion of organic C used by microorganisms for anabolism and ultimately influences the amount of C sequestered in soils. However, the key factors controlling CUE remain enigmatic, leading to considerable uncertainty in understanding soil C retention and predicting its responses to global change factors. Here, we investigate the global patterns of CUE estimate by stoichiometric modeling in surface soils of natural ecosystems, and examine its associations with temperature, precipitation, plant-derived C and soil nutrient availability. We found that CUE is determined by the most limiting resource among these four basic environmental resources within specific climate zones (i.e., tropical, temperate, arid, and cold zones). Higher CUE is common in arid and cold zones and corresponds to limitations in temperature, water, and plant-derived C input, while lower CUE is observed in tropical and temperate zones with widespread limitation of nutrients (e.g., nitrogen or phosphorus) in soil. The contrasting resource limitations among climate zones led to an apparent increase in CUE with increasing latitude. The resource-specific dependence of CUE implies that soils in high latitudes with arid and cold environments may retain less organic C in the future, as warming and increased precipitation can reduce CUE. In contrast, oligotrophic soils in low latitudes may increase organic C retention, as CUE could be increased with concurrent anthropogenic nutrient inputs. The findings underscore the importance of resource limitations for CUE and suggest asymmetric responses of organic C retention in soils across latitudes to global change factors.

5.
Sci Total Environ ; : 174788, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39019284

RESUMEN

Urban greenspaces typically refer to urban wetland, urban forest and urban turfgrass. They play a critical role in carbon sequestration by absorbing carbon from the atmosphere; however, their capacity to retain and store carbon in the form of soil organic carbon (SOC) varies significantly. This study provides a systematic analysis and review on the capacity of different urban greenspace types in retaining and storing SOC in 30 cm soil depth on a global scale. Data came from 78 publications on the subject of SOC stocks, covering different countries and climate zones. Overall, urban greenspace types exerted significant influences on the spatial pattern of SOC stocks, with the highest value of 18.86 ±â€¯11.57 kg m-2 (mean ±â€¯standard deviation) in urban wetland, followed by urban forest (6.50 ±â€¯3.65 kg m-2), while the lowest mean value of 4.24 ±â€¯3.28 kg m-2 was recorded in urban turfgrass soil. Soil organic carbon stocks in each urban greenspace type were significantly affected by climate zones, management/environmental settings, and selected soil properties (i.e. soil bulk density, pH and clay content). Furthermore, our analysis showed a significantly negative correlation between SOC stocks and human footprint in urban wetland, but a significantly positive relationship in urban forest and urban turfgrass. A positive correlation between SOC stocks and human footprint indicates that increased human activity and development can enhance SOC stocks through effective management and green infrastructure. Conversely, a negative correlation suggests that improper management of human activities can degrade SOC stocks. This highlights the need for sustainable practices to maintain or enhance SOC accumulation in urban greenspaces.

8.
Scott Geogr J ; 140(1-2): 233-247, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38774473

RESUMEN

Sustainable food systems are an important aspect of curbing the impacts of climate change and meeting targets of global food security. It is increasingly recognised that a wider suite of indicators is required to assess sustainability beyond the traditional environmental factors. This study focuses on Aberdeenshire, an atypical area of the UK where soils, climate and topography are not conducive to diverse or large-scale fruit and vegetable production, which in other areas, are a dominant feature of farmers' markets. Nevertheless, Aberdeenshire needs economic diversification to offset some of the impacts of the decline in the oil and gas industry. Face-to-face questionnaires were conducted across Aberdeenshire farmers' markets in summer 2022 to assess buyer and seller perceptions of the environmental, social and economic benefits of local food products. There was a positive attitude to local products with the majority of buyers perceiving the quality, nutrition, organic status and use of sustainable farming practices to be high. Conversely, the main products bought, baked goods and meat, are associated with negative impacts on the environment and/or human health. We discuss why, despite these shortfalls, farmers' markets provide a valuable opportunity to distribute and promote high quality wares to support the local economy.

10.
Cancer Discov ; 14(4): 663-668, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38571421

RESUMEN

SUMMARY: We are building the world's first Virtual Child-a computer model of normal and cancerous human development at the level of each individual cell. The Virtual Child will "develop cancer" that we will subject to unlimited virtual clinical trials that pinpoint, predict, and prioritize potential new treatments, bringing forward the day when no child dies of cancer, giving each one the opportunity to lead a full and healthy life.


Asunto(s)
Neoplasias , Humanos , Neoplasias/genética
11.
Proc Natl Acad Sci U S A ; 121(18): e2317332121, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38669180

RESUMEN

Soil organic carbon (SOC) is vital for terrestrial ecosystems, affecting biogeochemical processes, and soil health. It is known that soil salinity impacts SOC content, yet the specific direction and magnitude of SOC variability in relation to soil salinity remain poorly understood. Analyzing 43,459 mineral soil samples (SOC < 150 g kg-1) collected across different land covers since 1992, we approximate a soil salinity increase from 1 to 5 dS m-1 in croplands would be associated with a decline in mineral soils SOC from 0.14 g kg-1 above the mean predicted SOC ([Formula: see text] = 18.47 g kg-1) to 0.46 g kg-1 below [Formula: see text] (~-430%), while for noncroplands, such decline is sharper, from 0.96 above [Formula: see text] = 35.96 g kg-1 to 4.99 below [Formula: see text] (~-620%). Although salinity's significance in explaining SOC variability is minor (<6%), we estimate a one SD increase in salinity of topsoil samples (0 to 7 cm) correlates with respective [Formula: see text] declines of ~4.4% and ~9.26%, relative to [Formula: see text] and [Formula: see text]. The [Formula: see text] decline in croplands is greatest in vegetation/cropland mosaics while lands covered with evergreen needle-leaved trees are estimated with the highest [Formula: see text] decline in noncroplands. We identify soil nitrogen, land cover, and precipitation Seasonality Index as the most significant parameters in explaining the SOC's variability. The findings provide insights into SOC dynamics under increased soil salinity, improving understanding of SOC stock responses to land degradation and climate warming.

12.
World Allergy Organ J ; 17(3): 100873, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38463017

RESUMEN

Allergic rhinitis (AR) is a chronic respiratory condition that internationally continues to be burdensome and impacts quality of life. Despite availability of medicines and guidelines for healthcare providers for the optimal management of AR, optimisation of its management in the community continues to be elusive. The reasons for this are multi-faceted and include both environmental and healthcare related factors. One factor that we can no longer ignore is that AR management is no longer limited to the domain of healthcare provider and that people with AR make their own choices when choosing how to manage their condition, without seeking advice from a health care provider. We must build a bridge between healthcare provider knowledge and guidelines and patient decision-making. With this commentary, we propose that a shared decision-making approach between healthcare professionals and people with AR be developed and promoted, with a focus on patient health literacy. As custodians of AR knowledge, we have a responsibility to ensure it is accessible to those that matter most-the people with AR.

13.
Sci Total Environ ; 918: 170641, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38325442

RESUMEN

Coastal ecosystems, facing threats from global change and human activities like excessive nutrients, undergo alterations impacting their function and appearance. This study explores the intertwined microbial cycles of carbon (C) and nitrogen (N), encompassing methane (CH4), nitrous oxide (N2O), and nitrogen gas (N2) fluxes, to determine nutrient transformation processes between the soil-plant-atmosphere continuum in the coastal ecosystems with brackish water. Water salinity negatively impacted denitrification, bacterial nitrification, N fixation, and n-DAMO processes, but did not significantly affect archaeal nitrification, COMAMMOX, DNRA, and ANAMMOX processes in the N cycle. Plant species age and biomass influenced CH4 and N2O emissions. The highest CH4 emissions were from old Spartina and mixed Spartina and Scirpus sites, while Phragmites sites emitted the most N2O. Nitrification and incomplete denitrification mainly governed N2O emissions depending on the environmental conditions and plants. The higher genetic potential of ANAMMOX reduced excessive N by converting it to N2 in the sites with higher average temperatures. The presence of plants led to a decrease in the N fixers' abundance. Plant biomass negatively affected methanogenetic mcrA genes. Microbes involved in n-DAMO processes helped mitigate CH4 emissions. Over 93 % of the total climate forcing came from CH4 emissions, except for the Chinese bare site where the climate forcing was negative, and for Phragmites sites, where almost 60 % of the climate forcing came from N2O emissions. Our findings indicate that nutrient cycles, CH4, and N2O fluxes in soils are context-dependent and influenced by environmental factors and vegetation. This underscores the need for empirical analysis of both C and N cycles at various levels (soil-plant-atmosphere) to understand how habitats or plants affect nutrient cycles and greenhouse gas emissions.


Asunto(s)
Suelo , Humedales , Humanos , Ecosistema , Dióxido de Carbono/análisis , Óxido Nitroso/análisis , Poaceae , Nitrógeno/análisis , Plantas , Metano/análisis
14.
Proc Biol Sci ; 291(2015): 20232669, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38264781

RESUMEN

Approximately a third of all annual greenhouse gas emissions globally are directly or indirectly associated with the food system, and over a half of these are linked to livestock production. In temperate oceanic regions, such as the UK, most meat and dairy is produced in extensive systems based on pasture. There is much interest in the extent to which such grassland may be able to sequester and store more carbon to partially or completely mitigate other greenhouse gas emissions in the system. However, answering this question is difficult due to context-specificity and a complex and sometimes inconsistent evidence base. This paper describes a project that set out to summarize the natural science evidence base relevant to grassland management, grazing livestock and soil carbon storage potential in as policy-neutral terms as possible. It is based on expert appraisal of a systematically assembled evidence base, followed by a wide stakeholders engagement. A series of evidence statements (in the appendix of this paper) are listed and categorized according to the nature of the underlying information, and an annotated bibliography is provided in the electronic supplementary material.


Asunto(s)
Gases de Efecto Invernadero , Disciplinas de las Ciencias Naturales , Animales , Pradera , Ganado , Carbono , Suelo
15.
Glob Chang Biol ; 30(1): e17129, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38273484

Asunto(s)
Agricultura , Suelo
16.
Nat Commun ; 15(1): 102, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38167278

RESUMEN

The soil carbon-climate feedback is currently the least constrained component of global warming projections, and the major source of uncertainties stems from a poor understanding of soil carbon turnover processes. Here, we assemble data from long-term temperature-controlled soil incubation studies to show that the arctic and boreal region has the shortest intrinsic soil carbon turnover time while tropical forests have the longest one, and current Earth system models overestimate intrinsic turnover time by 30 percent across active, slow and passive carbon pools. Our constraint suggests that the global soils will switch from carbon sink to source, with a loss of 0.22-0.53 petagrams of carbon per year until the end of this century from strong mitigation to worst emission scenarios, suggesting that global soils will provide a strong positive carbon feedback on warming. Such a reversal of global soil carbon balance would lead to a reduction of 66% and 15% in the current estimated remaining carbon budget for limiting global warming well below 1.5 °C and 2 °C, respectively, rendering climate mitigation much more difficult.

17.
Nat Food ; 5(1): 37-47, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38168785

RESUMEN

Improving nutrition security in sub-Saharan Africa under increasing climate risks and population growth requires a strong and contextualized evidence base. Yet, to date, few studies have assessed climate-smart agriculture and nutrition security simultaneously. Here we use an integrated assessment framework (iFEED) to explore stakeholder-driven scenarios of food system transformation towards climate-smart nutrition security in Malawi, South Africa, Tanzania and Zambia. iFEED translates climate-food-emissions modelling into policy-relevant information using model output implication statements. Results show that diversifying agricultural production towards more micronutrient-rich foods is necessary to achieve an adequate population-level nutrient supply by mid-century. Agricultural areas must expand unless unprecedented rapid yield improvements are achieved. While these transformations are challenging to accomplish and often associated with increased greenhouse gas emissions, the alternative for a nutrition-secure future is to rely increasingly on imports, which would outsource emissions and be economically and politically challenging given the large import increases required.


Asunto(s)
Agricultura , Cambio Climático , Agricultura/métodos , Alimentos , Clima , Malaui
18.
Clin Transl Allergy ; 13(12): e12323, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38146800

RESUMEN

BACKGROUND: Anaphylaxis is a sudden multisystem allergic reaction which may result in a fatal outcome if not treated promptly. Guidelines worldwide suggest intramuscular adrenaline as the first-line treatment for anaphylaxis outside a perioperative reaction. Adrenaline autoinjectors (AAIs) are widely used self-administrable devices, especially in community settings. Different commercial AAIs have been authorized to be marketed in Europe. For an AAI to be efficacious, a rapid adrenaline delivery in patients, including those who are overweight or obese, resulting in an optimal cardiovascular (CV) response, is a key feature. AAIs are designed to achieve this requirement, which is reflected in their differing functional properties such as primary container selection, drug delivery mechanism (cartridge-or syringe-based), needle length, needle gauge, and adrenaline dose (150 µg, 300 µg, or 500 µg). However, the differences in functional properties across these devices may play a critical role in achieving these requirements as well as the differences in ergonomics in the handling of these devices. THE PURPOSE OF THIS REVIEW: Considering the dynamic pharmacokinetic/pharmacodynamic (PK/PD) profiles of different AAIs marketed in Europe and their effect on adrenaline delivery, the expert panel, also serving as author for this paper have carried out a detailed analysis of the PK/PD profiles of four AAIs, namely, Anapen, Emerade, EpiPen, and Jext, to delineate the adrenaline delivery and their subsequent physiological effects on the backdrop of device characteristics, dose strength, and the skin-to-muscle distances of the participants.

19.
Nat Commun ; 14(1): 7625, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37993450

RESUMEN

Carbon sequestration in grasslands has been proposed as an important means to offset greenhouse gas emissions from ruminant systems. To understand the potential and limitations of this strategy, we need to acknowledge that soil carbon sequestration is a time-limited benefit, and there are intrinsic differences between short- and long-lived greenhouse gases. Here, our analysis shows that one tonne of carbon sequestrated can offset radiative forcing of a continuous emission of 0.99 kg methane or 0.1 kg nitrous oxide per year over 100 years. About 135 gigatonnes of carbon is required to offset the continuous methane and nitrous oxide emissions from ruminant sector worldwide, nearly twice the current global carbon stock in managed grasslands. For various regions, grassland carbon stocks would need to increase by approximately 25% - 2,000%, indicating that solely relying on carbon sequestration in grasslands to offset warming effect of emissions from current ruminant systems is not feasible.

20.
Sci Total Environ ; 903: 166711, 2023 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-37652390

RESUMEN

Improving soil health and resilience is fundamental for sustainable food production, however the role of soil in maintaining or improving global crop productivity under climate warming is not well identified and quantified. Here, we examined the impact of soil on yield response to climate warming for four major crops (i.e., maize, wheat, rice and soybean), using global-scale datasets and random forest method. We found that each °C of warming reduced global yields of maize by 3.4%, wheat by 2.4%, rice by 0.3% and soybean by 5.0%, which were spatially heterogeneous with possible positive impacts. The random forest modeling analyses further showed that soil organic carbon (SOC), as an indicator of soil quality, dominantly explained the spatial heterogeneity of yield responses to warming and would regulate the negative warming responses. Improving SOC under the medium SOC sequestration scenario would reduce the warming-induced yield loss of maize, wheat, rice and soybean to 0.1% °C-1, 2.7% °C-1, 3.4% °C-1 and - 0.6% °C-1, respectively, avoiding an average of 3%-5% °C-1 of global yield loss. These yield benefits would occur on 53.2%, 67.8%, 51.8% and 71.6% of maize, wheat, rice and soybean planting areas, respectively, with particularly pronounced benefits in the regions with negative warming responses. With improved soil carbon, food systems are predicted to provide additional 20 to over 130 million tonnes of food that would otherwise lose due to future warming. Our findings highlight the critical role of soil in alleviating negative warming impacts on food security, especially for developing regions, given that sustainable actions on soil improvement could be taken broadly.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA