RESUMEN
Lately, the usefulness of liposomal drug delivery systems has been debated. To better understand the underlying pharmacokinetics of the targeted drug delivery by liposomes, individual encapsulated and non-encapsulated drug concentrations in blood, tumor, liver, spleen and kidneys were quantified after i.v. administration of liposomal prednisolone phosphate in mice. Kinetic analysis shows that the tumor influx of encapsulated drug is not dominant compared to the uptake by the other tissues. Further, from a quantitative point of view, the availability of non-encapsulated drug in the tumor tissue after liposomal delivery is not pronounced as compared to the other tissues studied. However, drug release in the tumor seems more extended than in the other tissues and the non-encapsulated drug concentration decreases more slowly in the tumor than in the liver and spleen. The spleen shows a high affinity for the uptake of encapsulated drug as well as the release of drug from the liposomes. Subsequently, released drug in the spleen, and possibly also in other tissues, is probably quickly redistributed towards the blood and other tissues. This also impairs the drug delivery effect of the liposomes. In contrast to the released drug in the central circulation, liver and spleen, the released drug concentration in the tumor remains at a fairly constant level likely due to the extended release kinetics from the liposomes. These extended release characteristics in the tumor most probably contribute to the beneficial effect. Nevertheless, it should be noted that larger released drug concentrations are formed in healthy tissues.
Asunto(s)
Sistemas de Liberación de Medicamentos , Liberación de Fármacos , Glucocorticoides/farmacocinética , Liposomas/química , Melanoma Experimental/tratamiento farmacológico , Polietilenglicoles/química , Prednisolona/análogos & derivados , Animales , Apoptosis , Proliferación Celular , Modelos Animales de Enfermedad , Glucocorticoides/administración & dosificación , Humanos , Cinética , Masculino , Melanoma Experimental/metabolismo , Melanoma Experimental/patología , Ratones , Ratones Endogámicos C57BL , Prednisolona/administración & dosificación , Prednisolona/farmacocinética , Distribución Tisular , Células Tumorales CultivadasRESUMEN
This paper presents the development of a new method for the simple and reliable quantification of the free drug amount in liposomal preparations of prednisolone phosphate (PP). In this method the free drug is distinguished from the encapsulated drug by means of hydrolysis of the free PP into prednisolone (P) by alkaline phosphatase (AP). During method development reaction progress curves were recorded to determine the required AP concentration and the corresponding incubation time to achieve hydrolysis of all free PP. Reaction progress curves also showed that small changes in the amount of weighted AP and the incubation periods used do not cause a change in outcome. Further, several organic solvents were tested as precipitation solvent and the use of tetrahydrofuran (THF) yielded clean chromatograms, rapid AP deactivation and complete liposome rupture avoiding under- and overestimations of the encapsulated and free drug concentrations. Method accuracy was evaluated during a cross-validation involving dialysis. Intra- and interday precision were evaluated by determining the standard deviation (SD) and relative standard deviation (RSD) after applying the new method on one day (n=4) and on different days (n=3). The accuracy of the developed method is comparable to the accuracy determined by dialysis, while clearly the method using AP is more precise. In conclusion, comprehensive method development yielded an accurate and precise method, which can replace traditional methods like dialysis and solid phase extraction (SPE). With little effort the method can be upgraded and become part of the liposome certification prior to human use. The overall principle behind the method offers possibilities for many drug carrier systems.