RESUMEN
Chimeric antigen receptor T-cell (CAR T-cell) therapy has revolutionized the treatment of hematologic malignancies in patients with relapsed or refractory disease without other treatment options. However, only a very small proportion of patients with an indication for CAR T-cell can access the treatment. The imbalance between supply and demand is magnified in minority and vulnerable populations. Limited access is multifactorial and in part a result of factors directly related to the cellular product such as cost, complex logistics and manufacturing limitations. On the other hand, the impact of diversity, equity, and inclusion (DEI) and their social and structural context are also key to understanding access barriers in cellular therapy and health care in general. CAR T-cell therapy provides us with a new opportunity to better understand and prioritize this gap, a key step towards proactively and strategically addressing access. The aim of this review is to provide an analysis of the current state of access to CAR T therapy with a focus on the influence of DEI. We will cover aspects related to the cellular product and the inseparable context of social and structural determinants. Identifying and addressing barriers is necessary to ensure equitable access to this and all future novel therapies.
Asunto(s)
Neoplasias Hematológicas , Inmunoterapia Adoptiva , Humanos , Inmunoterapia Adoptiva/efectos adversos , Diversidad, Equidad e Inclusión , Tratamiento Basado en Trasplante de Células y TejidosRESUMEN
Pericardial decompression syndrome (PDS) is a potentially fatal disorder of left ventricular function that sometimes occurs after drainage of a pericardial effusion for cardiac tamponade. Patients at risk for PDS are difficult to identify. Here, we report 2 cases where PDS developed after drainage of effusions that had been present for years, suggesting that patients with chronic effusions are at higher risk for PDS. (Level of Difficulty: Advanced.).
RESUMEN
OBJECTIVE: The aim of this study is to investigate facial nerve outcomes after microsurgical resection in neurofibromatosis type 2 (NF2) compared to sporadic tumors. STUDY DESIGN: Single institutional retrospective chart review. SETTING: Tertiary referral center. METHODS: All adult patients with NF2 vestibular schwannoma (VS) or sporadic VS who underwent microsurgical resection from 2008 to 2019 with preoperative magnetic resonance imaging (MRI) and 1 year of postsurgical follow-up were included. The primary outcome measure was postoperative House-Brackmann (HB) facial nerve score measured at first postoperative visit and after at least 10 months. RESULTS: In total, 161 sporadic VSs and 14 NF2 VSs met inclusion criteria. Both median tumor diameter (NF2, 33.5 mm vs sporadic, 24 mm, P = .0011) and median tumor volume (NF2, 12.4 cm3 vs sporadic, 2.9 cm3, P = .0005) were significantly greater in patients with NF2. The median follow-up was 24.9 months (range, 12-130.1). Median facial nerve function after 1 year for patients with NF2 was HB 3 (range, 1-6) compared to HB 1 (range, 1-6) for sporadic VS (P = .001). With multivariate logistic regression, NF2 tumors (odds ratio [OR] = 13.9, P = .001) and tumor volume ≥3 cm3 (OR = 3.6, P = .025) were significantly associated with HB ≥3 when controlling for age, sex, extent of tumor resection, translabyrinthine approach, and prior radiation. CONCLUSION: Tumor volume >3 cm3 and NF2 tumors are associated with poorer facial nerve outcomes 1 year following microsurgical resection.
Asunto(s)
Nervio Facial/fisiología , Neurofibromatosis 2/cirugía , Neuroma Acústico/cirugía , Adolescente , Adulto , Anciano , Femenino , Humanos , Masculino , Microcirugia , Persona de Mediana Edad , Neurofibromatosis 2/patología , Neuroma Acústico/patología , Estudios Retrospectivos , Resultado del Tratamiento , Carga Tumoral , Adulto JovenRESUMEN
The coronavirus disease 2019 (COVID-19) has greatly impacted health-care systems worldwide, leading to an unprecedented rise in demand for health-care resources. In anticipation of an acute strain on established medical facilities in Dallas, Texas, federal officials worked in conjunction with local medical personnel to convert a convention center into a Federal Medical Station capable of caring for patients affected by COVID-19. A 200,000 square foot event space was designated as a direct patient care area, with surrounding spaces repurposed to house ancillary services. Given the highly transmissible nature of the novel coronavirus, the donning and doffing of personal protective equipment (PPE) was of particular importance for personnel staffing the facility. Furthermore, nationwide shortages in the availability of PPE necessitated the reuse of certain protective materials. This article seeks to delineate the procedures implemented regarding PPE in the setting of a COVID-19 disaster response shelter, including workspace flow, donning and doffing procedures, PPE conservation, and exposure event protocols.
Asunto(s)
COVID-19/transmisión , Protocolos Clínicos/normas , Refugio de Emergencia/organización & administración , Equipo de Protección Personal , COVID-19/terapia , Refugio de Emergencia/tendencias , Humanos , Control de Infecciones/métodos , Control de Infecciones/normas , Control de Infecciones/tendencias , Transmisión de Enfermedad Infecciosa de Paciente a Profesional/prevención & controlRESUMEN
The key sites within the gastrointestinal (GI) tract where T cells mediate effector responses and the impact of these responses on intestinal stem cells (ISCs) remain unclear. Using experimental bone marrow transplantation to model immune-mediated GI damage and 3D imaging to analyze T cell localization, we found that the ISC compartment is the primary intestinal site targeted by T cells after transplantation. Recruitment to the crypt base region resulted in direct T cell engagement with the stem cell compartment and loss of crypt base columnar ISCs, which expressed both MHC classes I and II. Vasculature expressing the adhesion molecule MAdCAM-1 clustered near the crypt base, preferentially regulating crypt compartment invasion and ISC reduction without affecting T cell migration to villi. These findings indicate that allogeneic T cells rapidly access the stem cell niche after transplantation, and this targeted recruitment to the stem cell compartment results in ISC loss during immune-mediated GI damage.
Asunto(s)
Células Madre Adultas/inmunología , Trasplante de Médula Ósea , Mucosa Intestinal/inmunología , Nicho de Células Madre/inmunología , Linfocitos T/inmunología , Animales , Vasos Sanguíneos/metabolismo , Vasos Sanguíneos/patología , Moléculas de Adhesión Celular/metabolismo , Movimiento Celular , Citotoxicidad Inmunológica , Femenino , Humanos , Imagenología Tridimensional , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Transgénicos , Persona de Mediana Edad , Modelos Animales , Mucoproteínas , Trasplante HomólogoRESUMEN
Chronic graft-versus-host disease (cGvHD) remains a major complication of allogeneic hematopoietic stem cell transplantation (HSCT). A number of studies support a role for B cells in the pathogenesis of cGvHD. In this study, we report the presence of an expanded population of CD19+CD21- B cells with features of exhaustion in the peripheral blood of patients with cGvHD. CD21- B cells were significantly increased in patients with active cGvHD compared to patients without cGvHD and healthy controls (median 12.2 versus 2.12 versus 3%, respectively; p < 0.01). Compared with naïve (CD27-CD21+) and classical memory (CD27+CD21+) B cells, CD19+CD21- B cells in cGvHD were CD10 negative, CD27 negative and CD20hi, and exhibited features of exhaustion, including increased expression of multiple inhibitory receptors such as FCRL4, CD22, CD85J, and altered expression of chemokine and adhesion molecules such as CD11c, CXCR3, CCR7, and CD62L. Moreover, CD21- B cells in cGvHD patients were functionally exhausted and displayed poor proliferative response and calcium mobilization in response to B-cell receptor triggering and CD40 ligation. Finally, the frequencies of circulating CD21- B cells correlated with cGvHD severity in patients after HSCT. Our study further characterizes B cells in chronic cGVHD and supports the use of CD21-CD27-CD10- B cell frequencies as a biomarker of disease severity.
RESUMEN
Chronic lymphocytic leukemia (CLL) cells possess regulatory functions comparable to those of normal B10 cells, a regulatory B cell subset that suppresses effector T-cell function through STAT3-mediated IL-10 production. However, the mechanisms governing IL-10 production by CLL cells are not fully understood. Here, we show that the CXC chemokine ligand 12 (CXCL12)-CXCR4-STAT3 axis regulates IL-10 production by CLL cells and their ability to suppress T-cell effector function through an IL-10 mediated mechanism. Knockdown of STAT3 significantly impaired the ability of CLL cells to produce IL-10. Furthermore, experiments to assess the role of lenalidomide, an immunomodulatory agent with direct antitumor effect as well as pleiotropic activity on the immune system, showed that this agent prevents a CXCL12-induced increase in p-S727-STAT3 and the IL-10 response by CLL cells. Lenalidomide also suppressed IL-10-induced Y705-STAT3 phosphorylation in healthy T cells, thus reversing CLL-induced T-cell dysfunction. We conclude that the capacity of CLL cells to produce IL-10 is mediated by the CXCL12-CXCR4-STAT3 pathway and likely contributes to immunodeficiency in patients. Lenalidomide appears to be able to reverse CLL-induced immunosuppression through including abrogation of the CXCL12-CXCR4-S727-STAT3-mediated IL-10 response by CLL cells and prevention of IL-10-induced phosphorylation of Y705-STAT3 in T cells.
RESUMEN
Myelodysplastic syndromes (MDSs) are a group of hematopoietic disorders affecting the myeloid lineage, characterized by cytopenias and clonal evolution to acute myeloid leukemia (AML). We hypothesized that natural killer (NK) cells and their activating killer immunoglobulin-like receptors (aKIRs) influence the immune surveillance and clinical outcome of patients with MDSs. Here, we first examined the distribution of aKIR genes and haplotype in 2 independent cohorts of MDS and AML patients. The median number of aKIR genes was lower in MDS patients than healthy controls (2 vs 3 genes; P = .001), and lower in patients with secondary AML (progressed from MDSs) compared with de novo AML patients (2 vs 3; P = .008) and healthy controls (2 vs 3; P = .006). In a multivariate analysis, the presence of KIR haplotype A (characterized by low aKIR content 0-1) independently predicted a higher risk of conversion to AML (relative risk [RR] with 95% confidence interval [CI], 2.67 [1.13-6.71]; P = .02) and worse adjusted progression-free survival (RR with 95% CI, 2.96 [1.59-5.52]; P = .001) and overall survival (2.25 [1.17-4.31]; P = .02), compared with KIR haplotype B (multiple aKIR genes). These novel findings may help to identify MDS patients with a high risk of disease progression who would likely benefit from adoptive NK-cell therapy.
Asunto(s)
Haplotipos/genética , Síndromes Mielodisplásicos/genética , Síndromes Mielodisplásicos/terapia , Receptores KIR/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Transformación Celular Neoplásica/patología , Progresión de la Enfermedad , Femenino , Dosificación de Gen , Humanos , Leucemia Mieloide Aguda/patología , Masculino , Persona de Mediana Edad , Síndromes Mielodisplásicos/patología , Pronóstico , Resultado del Tratamiento , Adulto JovenRESUMEN
The ability of cord blood transplantation (CBT) to prevent relapse depends partly on donor natural killer (NK) cell alloreactivity. NK effector function depends on specific killer-cell immunoglobulin-like receptors (KIR) and HLA interactions. Thus, it is important to identify optimal combinations of KIR-HLA genotypes in donors and recipients that could improve CBT outcome. We studied clinical data, KIR and HLA genotypes, and NK-cell reconstitution in CBT patients (n = 110). Results were validated in an independent cohort (n = 94). HLA-KIR genotyping of recipient germline and transplanted cord blood (CB) grafts predicted for large differences in outcome. Patients homozygous for HLA-C2 group alleles had higher 1-year relapse rate and worse survival after CBT than did HLA-C1/C1 or HLA-C1/C2 (HLA-C1/x) patients: 67.8% vs 26.0% and 15.0% vs 52.9%, respectively. This inferior outcome was associated with delayed posttransplant recovery of NK cells expressing the HLA-C2-specific KIR2DL1/S1 receptors. HLA-C1/x patients receiving a CB graft with the combined HLA-C1-KIR2DL2/L3/S2 genotype had lower 1-year relapse rate (6.7% vs 40.1%) and superior survival (74.2% vs 41.3%) compared with recipients of grafts lacking KIR2DS2 or HLA-C1 HLA-C2/C2 patients had lower relapse rate (44.7% vs 93.4%) and better survival (30.1% vs 0%) if they received a graft with the combined HLA-C2-KIR2DL1/S1 genotype. Relapsed/refractory disease at CBT, recipient HLA-C2/C2 genotype, and donor HLA-KIR genotype were independent predictors of outcome. Thus, we propose the inclusion of KIR genotyping in graft selection criteria for CBT. HLA-C1/x patients should receive an HLA-C1-KIR2DL2/L3/S2 CB graft, while HLA-C2/C2 patients may benefit from an HLA-C2-KIR2DL1/S1 graft.