Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Animals (Basel) ; 14(19)2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39409724

RESUMEN

Salmonellosis in dairy cattle represents an increasing problem for both animal and public health. Nevertheless, in Italy, there is no control plan in place on dairy farms. The aim of this study was to describe a Salmonella Bredeney outbreak that occurred on a dairy farm and the measures that were adopted to control the outbreak. Management consisted in identifying the spread of infection and assessing the environmental contamination of Salmonella spp. and the associated risk factors. After the farm visit, laboratory investigations showed that 48% of rectal swabs collected from calves and 33% of environmental samples were positive for S. Bredeney, and a poor biosecurity level was detected. The farmer and practitioner were provided with a health management plan to control the spread of Salmonella spp., followed by a monitoring period and a follow-up visit in which all samples resulted negative. The results demonstrated the efficacy of indirect prophylaxis measures in reducing the circulation of Salmonella spp., leading to the extinction of the outbreak. Collaboration with farmers, practitioners, and public health veterinarians and the introduction of measures reported in the health management plan constitute a possible model for the management of Salmonella spp. outbreaks in dairy herds, even in complex farm situations.

2.
Pathogens ; 12(10)2023 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-37887782

RESUMEN

Salmonella is one of the most spread foodborne pathogens worldwide, and Salmonella infections in humans still represent a global health burden. The main source of Salmonella infections in humans is represented by contaminated animal-derived foodstuffs, with pork products being one of the most important players. Salmonella infection in swine is critical not only because it is one of the main causes of economic losses in the pork industry, but also because pigs can be infected by several Salmonella serovars, potentially contaminating the pig meat production chain and thus posing a significant threat to public health globally. As of now, in Europe and in the United States, swine-related Salmonella serovars, e.g., Salmonella Typhimurium and its monophasic variant Salmonella enterica subsp. enterica 1,4,[5],12:i:-, are also frequently associated with human salmonellosis cases. Moreover, multiple outbreaks have been reported in the last few decades which were triggered by the consumption of Salmonella-contaminated pig meat. Throughout the years, changes and evolution across the pork industry may have acted as triggers for new issues and obstacles hindering Salmonella control along the food chain. Gathered evidence reinforces the importance of coordinating control measures and harmonizing monitoring programs for the efficient control of Salmonella in swine. This is necessary in order to manage outbreaks of clinical disease in pigs and also to protect pork consumers by controlling Salmonella subclinical carriage and shedding. This review provides an update on Salmonella infection in pigs, with insights on Salmonella ecology, focusing mainly on Salmonella Choleraesuis, S. Typhimurium, and S. 1,4,[5],12:i:-, and their correlation to human salmonellosis cases. An update on surveillance methods for epidemiological purposes of Salmonella infection in pigs and humans, in a "One Health" approach, will also be reported.

3.
Emerg Infect Dis ; 30(4): 786-790, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38526237

RESUMEN

We isolated Issyk-Kul virus (ISKV) from a bat sampled from Italy in 2021 and conducted ISKV-specific surveillance in bats collected in Italy during 2017-2023. ISKV circulation among synanthropic and sedentary species of bat, such as Savi's pipistrelle bat (Hypsugo savii) in northern Italy, may have public health implications in this region.


Asunto(s)
Quirópteros , Animales , Italia/epidemiología , Salud Pública
4.
J Microbiol Methods ; 201: 106564, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36084763

RESUMEN

BACKGROUND: Salmonella enterica is among the major burdens for public health at global level. Typing of salmonellae below the species level is fundamental for different purposes, but traditional methods are expensive, technically demanding, and time-consuming, and therefore limited to reference centers. Fourier transform infrared (FTIR) spectroscopy is an alternative method for bacterial typing, successfully applied for classification at different infra-species levels. AIM: This study aimed to address the challenge of subtyping Salmonella enterica at O-serogroup level by using FTIR spectroscopy. We applied machine learning to develop a novel approach for S. enterica typing, using the FTIR-based IR Biotyper® system (IRBT; Bruker Daltonics GmbH & Co. KG, Germany). We investigated a multicentric collection of isolates, and we compared the novel approach with classical serotyping-based and molecular methods. METHODS: A total of 958 well characterized Salmonella isolates (25 serogroups, 138 serovars), collected in 11 different centers (in Europe and Japan), from clinical, environmental and food samples were included in this study and analyzed by IRBT. Infrared absorption spectra were acquired from water-ethanol bacterial suspensions, from culture isolates grown on seven different agar media. In the first part of the study, the discriminatory potential of the IRBT system was evaluated by comparison with reference typing method/s. In the second part of the study, the artificial intelligence capabilities of the IRBT software were applied to develop a classifier for Salmonella isolates at serogroup level. Different machine learning algorithms were investigated (artificial neural networks and support vector machine). A subset of 88 pre-characterized isolates (corresponding to 25 serogroups and 53 serovars) were included in the training set. The remaining 870 samples were used as validation set. The classifiers were evaluated in terms of accuracy, error rate and failed classification rate. RESULTS: The classifier that provided the highest accuracy in the cross-validation was selected to be tested with four external testing sets. Considering all the testing sites, accuracy ranged from 97.0% to 99.2% for non-selective media, and from 94.7% to 96.4% for selective media. CONCLUSIONS: The IRBT system proved to be a very promising, user-friendly, and cost-effective tool for Salmonella typing at serogroup level. The application of machine learning algorithms proved to enable a novel approach for typing, which relies on automated analysis and result interpretation, and it is therefore free of potential human biases. The system demonstrated a high robustness and adaptability to routine workflows, without the need of highly trained personnel, and proving to be suitable to be applied with isolates grown on different agar media, both selective and unselective. Further tests with currently circulating clinical, food and environmental isolates would be necessary before implementing it as a potentially stand-alone standard method for routine use.


Asunto(s)
Salmonella enterica , Agar , Inteligencia Artificial , Técnicas de Tipificación Bacteriana/métodos , Medios de Cultivo , Etanol , Humanos , Aprendizaje Automático , Salmonella , Serogrupo , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Agua
5.
Animals (Basel) ; 12(12)2022 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-35739929

RESUMEN

A systematic surveillance against influenza A viruses (IAVs) in the Suidae population is essential, considering their role as IAV mixing vessels. However, the viral circulation in wild Sus scrofa species is poorly investigated in comparison to the knowledge of IAV infection dynamics in domestic pigs. This study investigated the circulation and the genetic diversity of wild boars' IAVs detected in the Emilia-Romagna region (2017-2022). A total of 4605 lung samples were screened via an M gene real-time RT-PCR for SwIAV; positive samples were subtyped by multiplex RT-PCR, and viral isolation was attempted. Isolated strains (3 out of the 17 positives) were fully sequenced to evaluate viral genotypic diversity. H1N1 was the most frequently detected subtype, with identification of H1pdm09N1 and H1avN1. Whole-genome phylogenetic analysis revealed SwIAVs belonging to different genotypes, with different genetic combinations, and highlighted the simultaneous circulation of the same genotypes in both pigs and wild boars, supporting the hypothesis of SwIAV spillover events at the wildlife-livestock interface. This study represents an update on the wild boar SwIAV Italian situation, and the strains' complete genome analysis showed an evolving and interesting situation that deserves further investigation.

6.
Eur J Wildl Res ; 67(5): 88, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34602932

RESUMEN

During 2020, a total of 64 wild boar carcasses were tested for Enterobacteriaceae count (EBC), Salmonella and Yersinia enterocolitica in the abdominal region (i) within 5 h after hunting in the game collection point and (ii) before dressing and processing in the game-handling establishment (GHE) (49 carcasses-average time interval between (i) and (ii): 4.3 days). Because of COVID-19 restrictions, 15 carcasses were transported to a near slaughterhouse (average time interval between (i) and (ii): 2.3 days). Mesenteric lymph nodes (MLNs) were collected and tested for Salmonella and Y. enterocolitica. Results are shown in relation to sampling A (49 carcasses-GHE) and sampling B (15 carcasses-slaughterhouse). Sampling A: EBC median values were (i) 2.51 log10 CFU/cm2 and (ii) 2.79 log10 CFU/cm2. EBC increase between (i) and (ii) was statistically significant (p = 0.001). Salmonella prevalence on carcasses varied from (i) 2.0 to (ii) 6.1%. Sampling B: EBC median values were (i) 3.1 log10 CFU/cm2 and (ii) 3.32 log10 CFU/cm2. EBC increase between (i) and (ii) was not statistically significant (p = 0.191). Salmonella prevalence on carcasses varied from (i) 6.7 to (ii) 0.0%. The prevalence (sampling A + B) of lymphatic Salmonella carriers was 7.8% (5/64). From carcasses and/or MNLs, the serovars Enteritidis, Typhimurium, Agama, Zaiman and Diarizonae O:50 (z) were detected. Y. enterocolitica was never isolated. Long chilling periods prior to wild game processing should be avoided, and carcasses should be tested at GHE rather than after shooting to proper reflect the microbial load of wild boar meat entering the food chain.

7.
Eur J Clin Microbiol Infect Dis ; 40(12): 2585-2592, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34351529

RESUMEN

This study aims to describe trends of mcr-positive Enterobacterales in humans based on laboratory surveillance with a defined catchment population. The data source is the Micro-RER surveillance system, established in Emilia-Romagna region (Italy), to monitor the trend of mcr resistance. Enterobacterales isolates from human clinical samples with minimum inhibitory concentration (MIC) ≥ 2 mg/L for colistin were sent to the study reference laboratory for the detection of mcr genes. Isolates prospectively collected in the period 2018-2020 were considered for the assessment of population rates and trends; further analyses were carried out for the evaluation of clonality and horizontal mcr gene transfer. Previous isolates from local laboratory collection were also described. In the period 2018-2020, 1164 isolates were sent to the reference laboratory, and 51 (4.4%) were confirmed as mcr-positive: 50 mcr-1 (42 Escherichia coli, 6 Klebsiella pneumoniae, 2 Salmonella enterica) and 1 mcr-4 (Enterobacter cloacae). The number of mcr-positive isolates dropped from 24 in the first half of 2018 to 3 in the whole of 2020 (trend p value < 0.001). Genomic analyses showed the predominant role of the horizontal transfer of mcr genes through plasmids or dissemination of transposable elements compared to clonal dissemination of mcr-positive microorganisms. The study results demonstrate a substantial decrease in the circulation of mcr-1 plasmid genes in Emilia-Romagna Region.


Asunto(s)
Proteínas Bacterianas/metabolismo , Infecciones por Enterobacteriaceae/microbiología , Enterobacteriaceae/enzimología , Etanolaminofosfotransferasa/metabolismo , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Farmacorresistencia Bacteriana , Enterobacteriaceae/clasificación , Enterobacteriaceae/efectos de los fármacos , Enterobacteriaceae/genética , Infecciones por Enterobacteriaceae/epidemiología , Etanolaminofosfotransferasa/genética , Humanos , Italia/epidemiología , Pruebas de Sensibilidad Microbiana , Filogenia , Estudios Retrospectivos
8.
Microorganisms ; 9(4)2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33921159

RESUMEN

Typhoidal and para-typhoidal Salmonella are major causes of bacteraemia in resource-limited countries. Diagnostic alternatives to laborious and resource-demanding serotyping are essential. Fourier transform infrared spectroscopy (FTIRS) is a rapidly developing and simple bacterial typing technology. In this study, we assessed the discriminatory power of the FTIRS-based IR Biotyper (Bruker Daltonik GmbH, Bremen, Germany), for the rapid and reliable identification of biochemically confirmed typhoid and paratyphoid fever-associated Salmonella isolates. In total, 359 isolates, comprising 30 S. Typhi, 23 S. Paratyphi A, 23 S. Paratyphi B, and 7 S. Paratyphi C, respectively and other phylogenetically closely related Salmonella serovars belonging to the serogroups O:2, O:4, O:7 and O:9 were tested. The strains were derived from clinical, environmental and food samples collected at different European sites. Applying artificial neural networks, specific automated classifiers were built to discriminate typhoidal serovars from non-typhoidal serovars within each of the four serogroups. The accuracy of the classifiers was 99.9%, 87.0%, 99.5% and 99.0% for Salmonella Typhi, Salmonella Paratyphi A, B and Salmonella Paratyphi C, respectively. The IR Biotyper is a promising tool for fast and reliable detection of typhoidal Salmonella. Hence, IR biotyping may serve as a suitable alternative to conventional approaches for surveillance and diagnostic purposes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA