Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Sci Rep ; 14(1): 8587, 2024 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-38615147

RESUMEN

Helicobacter pylori infects approximately half the human population and has an unusual infective niche of the human stomach. Helicobacter pylori is a major cause of gastritis and has been classified as a group 1 carcinogen by the WHO. Treatment involves triple or quadruple antibiotic therapy, but antibiotic resistance is becoming increasingly prevalent. Helicobacter pylori expresses certain blood group related antigens (Lewis system) as a part of its lipopolysaccharide (LPS), which is thought to assist in immune evasion. Additionally, H. pylori LPS participates in adhesion to host cells alongside several adhesion proteins. This study profiled the carbohydrates of H. pylori reference strains (SS1 and 26695) using monoclonal antibodies (mAbs) and lectins, identifying interactions between two carbohydrate-targeting mAbs and multiple lectins. Atomic force microscopy (AFM) scans were used to probe lectin and antibody interactions with the bacterial surfaces. The selected mAb and lectins displayed an increased adhesive force over the surface of the curved H. pylori rods. Furthermore, this study demonstrates the ability of anti-carbohydrate antibodies to reduce the adhesion of H. pylori 26695 to human gastric adenocarcinoma cells via AFM. Targeting bacterial carbohydrates to disrupt crucial adhesion and immune evasion mechanisms represents a promising strategy for combating H. pylori infection.


Asunto(s)
Antígenos de Grupos Sanguíneos , Infecciones por Helicobacter , Helicobacter pylori , Humanos , Lipopolisacáridos , Polisacáridos , Anticuerpos Monoclonales , Lectinas
2.
Biochem J ; 477(17): 3219-3235, 2020 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-32789497

RESUMEN

Immunotherapy has been successful in treating many tumour types. The development of additional tumour-antigen binding monoclonal antibodies (mAbs) will help expand the range of immunotherapeutic targets. Lewis histo-blood group and related glycans are overexpressed on many carcinomas, including those of the colon, lung, breast, prostate and ovary, and can therefore be selectively targeted by mAbs. Here we examine the molecular and structural basis for recognition of extended Lea and Lex containing glycans by a chimeric mAb. Both the murine (FG88.2) IgG3 and a chimeric (ch88.2) IgG1 mAb variants showed reactivity to colorectal cancer cells leading to significantly reduced cell viability. We determined the X-ray structure of the unliganded ch88.2 fragment antigen-binding (Fab) containing two Fabs in the unit cell. A combination of molecular docking, glycan grafting and molecular dynamics simulations predicts two distinct subsites for recognition of Lea and Lex trisaccharides. While light chain residues were exclusively used for Lea binding, recognition of Lex involved both light and heavy chain residues. An extended groove is predicted to accommodate the Lea-Lex hexasaccharide with adjoining subsites for each trisaccharide. The molecular and structural details of the ch88.2 mAb presented here provide insight into its cross-reactivity for various Lea and Lex containing glycans. Furthermore, the predicted interactions with extended epitopes likely explains the selectivity of this antibody for targeting Lewis-positive tumours.


Asunto(s)
Anticuerpos Monoclonales de Origen Murino , Antineoplásicos Inmunológicos , Fragmentos Fab de Inmunoglobulinas , Antígenos del Grupo Sanguíneo de Lewis , Antígeno Lewis X , Simulación del Acoplamiento Molecular , Neoplasias , Oligosacáridos , Animales , Anticuerpos Monoclonales de Origen Murino/química , Anticuerpos Monoclonales de Origen Murino/inmunología , Antineoplásicos Inmunológicos/química , Antineoplásicos Inmunológicos/inmunología , Línea Celular Tumoral , Humanos , Fragmentos Fab de Inmunoglobulinas/química , Fragmentos Fab de Inmunoglobulinas/inmunología , Antígenos del Grupo Sanguíneo de Lewis/química , Antígenos del Grupo Sanguíneo de Lewis/inmunología , Antígeno Lewis X/química , Antígeno Lewis X/inmunología , Ratones , Neoplasias/química , Neoplasias/inmunología , Oligosacáridos/química , Oligosacáridos/inmunología
3.
J Biol Chem ; 295(4): 1009-1020, 2020 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-31831622

RESUMEN

Cancer remains a leading cause of morbidity and mortality worldwide, requiring ongoing development of targeted therapeutics such as monoclonal antibodies. Carbohydrates on embryonic cells are often highly expressed in cancer and are therefore attractive targets for antibodies. Stage-specific embryonic antigen-4 (SSEA-4) is one such glycolipid target expressed in many cancers, including breast and ovarian carcinomas. Here, we defined the structural basis for recognition of SSEA-4 by a novel monospecific chimeric antibody (ch28/11). Five X-ray structures of ch28/11 Fab complexes with the SSEA-4 glycan headgroup, determined at 1.5-2.7 Å resolutions, displayed highly similar three-dimensional structures indicating a stable binding mode. The structures also revealed that by adopting a horseshoe-shaped conformation in a deep groove, the glycan headgroup likely sits flat against the membrane to allow the antibody to interact with SSEA-4 on cancer cells. Moreover, we found that the terminal sialic acid of SSEA-4 plays a dominant role in dictating the exquisite specificity of the ch28/11 antibody. This observation was further supported by molecular dynamics simulations of the ch28/11-glycan complex, which show that SSEA-4 is stabilized by its terminal sialic acid, unlike SSEA-3, which lacks this sialic acid modification. These high-resolution views of how a glycolipid interacts with an antibody may help to advance a new class of cancer-targeting immunotherapy.


Asunto(s)
Anticuerpos Antineoplásicos/inmunología , Ácido N-Acetilneuramínico/metabolismo , Neoplasias/inmunología , Antígenos Embrionarios Específico de Estadio/metabolismo , Anticuerpos Antineoplásicos/química , Especificidad de Anticuerpos/inmunología , Conformación de Carbohidratos , Humanos , Fragmentos Fab de Inmunoglobulinas/metabolismo , Ligandos , Simulación de Dinámica Molecular , Polisacáridos/química , Polisacáridos/metabolismo , Antígenos Embrionarios Específico de Estadio/química
4.
Curr Opin Struct Biol ; 62: 48-55, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31874385

RESUMEN

Because of the ongoing increase in antibiotic-resistant microbes, new strategies such as therapeutic antibodies and effective vaccines are required. Bacterial carbohydrates are known to be particularly antigenic, and several monoclonal antibodies that target bacterial polysaccharides have been generated, with more in current development. This review examines the known 3D crystal structures of anti-bacterial antibodies and the structural basis for carbohydrate recognition and explores the potential mechanisms for antibody-dependent bacterial cell death. Understanding the key interactions between an antibody and its polysaccharide target on the surface of bacteria or in biofilms can provide essential information for the development of more specific and effective antibody therapeutics as well as carbohydrate-based vaccines.


Asunto(s)
Anticuerpos Antibacterianos , Anticuerpos Monoclonales , Bacterias , Polisacáridos Bacterianos , Animales , Anticuerpos Antibacterianos/inmunología , Anticuerpos Monoclonales/inmunología , Bacterias/inmunología , Humanos , Estructura Molecular , Polisacáridos Bacterianos/inmunología , Unión Proteica
5.
PLoS One ; 14(10): e0224028, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31622415

RESUMEN

The cytotoxic effects of melittin, a bee-venom peptide, have been widely studied towards cancer cells. Typically, these studies have examined the effect of melittin over extended-time courses (6-24 hours), meaning that immediate cellular interactions have been overlooked. In this work, we demonstrate the rapid effects of melittin on both gastric and colorectal cancer, specifically AGS, COLO205 and HCT-15 cell lines, over a period of 15 minutes. Melittin exhibited a dose dependent effect at 4 hours of treatment, with complete cellular death occurring at the highest dose of 20 µg/mL. Interestingly, when observed at shorter time points, melittin induced cellular changes within seconds; membrane damage was observed as swelling, breakage or blebbing. High-resolution imaging revealed treated cells to be compromised, showing clear change in cellular morphology. After 1 minute of melittin treatment, membrane changes were observed, and intracellular material could be seen expelled from the cells. Overall, these results enhance our understanding of the fast acting anti-cancer effects of melittin.


Asunto(s)
Antineoplásicos/farmacología , Membrana Celular/efectos de los fármacos , Meliteno/farmacología , Apoptosis/efectos de los fármacos , Venenos de Abeja/farmacología , Línea Celular Tumoral , Membrana Celular/metabolismo , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Humanos , Microscopía de Fuerza Atómica , Microscopía Fluorescente , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patología
6.
J Biol Chem ; 293(14): 5079-5089, 2018 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-29449370

RESUMEN

In response to the widespread emergence of antibiotic-resistant microbes, new therapeutic agents are required for many human pathogens. A non-mammalian polysaccharide, poly-N-acetyl-d-glucosamine (PNAG), is produced by bacteria, fungi, and protozoan parasites. Antibodies that bind to PNAG and its deacetylated form (dPNAG) exhibit promising in vitro and in vivo activities against many microbes. A human IgG1 mAb (F598) that binds both PNAG and dPNAG has opsonic and protective activities against multiple microbial pathogens and is undergoing preclinical and clinical assessments as a broad-spectrum antimicrobial therapy. Here, to understand how F598 targets PNAG, we determined crystal structures of the unliganded F598 antigen-binding fragment (Fab) and its complexes with N-acetyl-d-glucosamine (GlcNAc) and a PNAG oligosaccharide. We found that F598 recognizes PNAG through a large groove-shaped binding site that traverses the entire light- and heavy-chain interface and accommodates at least five GlcNAc residues. The Fab-GlcNAc complex revealed a deep binding pocket in which the monosaccharide and a core GlcNAc of the oligosaccharide were almost identically positioned, suggesting an anchored binding mechanism of PNAG by F598. The Fab used in our structural analyses retained binding to PNAG on the surface of an antibiotic-resistant, biofilm-forming strain of Staphylococcus aureus Additionally, a model of intact F598 binding to two pentasaccharide epitopes indicates that the Fab arms can span at least 40 GlcNAc residues on an extended PNAG chain. Our findings unravel the structural basis for F598 binding to PNAG on microbial surfaces and biofilms.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Inmunoglobulina G/inmunología , Polisacáridos Bacterianos/inmunología , Anticuerpos Monoclonales/química , Biopelículas , Conformación de Carbohidratos , Cristalografía por Rayos X , Humanos , Fragmentos Fab de Inmunoglobulinas/química , Fragmentos Fab de Inmunoglobulinas/inmunología , Inmunoglobulina G/química , Modelos Moleculares , Polisacáridos Bacterianos/química , Conformación Proteica , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/inmunología , Staphylococcus aureus/fisiología
7.
Curr Opin Struct Biol ; 44: 1-8, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-27821276

RESUMEN

Carbohydrate-binding antibodies and carbohydrate-based vaccines are being actively pursued as targeted immunotherapies for a broad range of cancers. Recognition of tumor-associated carbohydrates (glycans) by antibodies is predominantly towards terminal epitopes on glycoproteins and glycolipids on the surface of cancer cells. Crystallography along with complementary experimental and computational methods have been extensively used to dissect antibody recognition of glycan epitopes commonly found in cancer. We provide an overview of the structural biology of antibody recognition of tumor-associated glycans and propose potential rearrangements of these targets in the membrane that could dictate the complex biological activities of these antibodies against cancer cells.


Asunto(s)
Anticuerpos/inmunología , Neoplasias/inmunología , Neoplasias/patología , Secuencia de Aminoácidos , Animales , Anticuerpos/química , Epítopos/inmunología , Glicosilación , Humanos , Neoplasias/metabolismo , Polisacáridos/inmunología , Polisacáridos/metabolismo
8.
Mol Immunol ; 77: 113-25, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27497190

RESUMEN

We discovered that some bovine antibodies are amongst the largest known to exist due to the presence of an exceptionally long CDR3H (≥49 amino acids) with multiple cysteines that provide a unique knob and stalk structure to the antigen binding site. The large CDR3H size, unlike mouse and human, provides a suitable platform for antigenization with large configurational B-epitopes. Here we report the identification of a B-epitope on the gC envelope protein of bovine herpes virus type-1 (BoHV-1) recognized by a bovine IgG1 antibody. The identified 156 amino acid long gC fragment (gC156) was expressed as a recombinant protein. Subsequently, a functional scFv fragment with a 61 amino-acid long CDR3H (scFv1H12) was expressed such that gC156 was grafted into the CDR3H, replacing the "knob" region (gC156scFv1H12 or Ag-scFv). Importantly, the Ag-scFv could be recognized by a neutralizing antibody fragment (scFv3-18L), which suggests that the engraftment of gC156 into the CDR3H of 1H12 maintained the native conformation of the BoHV-1 B-epitope. A 3D model of gC156 was generated using fold-recognition approaches and this was grafted onto the CDR3H stalk of the 1H12 Fab crystal structure to predict the 3D structure of the Ag-scFv. The grafted antigen in Ag-scFv is predicted to have a compact conformation with the ability to protrude into the solvent. Upon immunization of bovine calves, the antigenized scFv (gC156scFv1H12) induced a higher antibody response as compared to free recombinant gC156. These observations suggest that antigenization of bovine scFv with an exceptionally long CDR3H provides a novel approach to developing the next generation of vaccines against infectious agents that require induction of protective humoral immunity.


Asunto(s)
Regiones Determinantes de Complementariedad/inmunología , Epítopos de Linfocito B/inmunología , Herpesvirus Bovino 1/inmunología , Anticuerpos de Cadena Única/inmunología , Proteínas del Envoltorio Viral/inmunología , Animales , Anticuerpos Antivirales/inmunología , Western Blotting , Bovinos , Ensayo de Inmunoadsorción Enzimática , Espectrometría de Masas , Modelos Moleculares , Reacción en Cadena de la Polimerasa , Proteínas Recombinantes/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA