Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
Evol Appl ; 17(7): e13743, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38957308

RESUMEN

The Neolithic transition introduced major diet and lifestyle changes to human populations across continents. Beyond well-documented bioarcheological and genetic effects, whether these changes also had molecular-level epigenetic repercussions in past human populations has been an open question. In fact, methylation signatures can be inferred from UDG-treated ancient DNA through postmortem damage patterns, but with low signal-to-noise ratios; it is thus unclear whether published paleogenomes would provide the necessary resolution to discover systematic effects of lifestyle and diet shifts. To address this we compiled UDG-treated shotgun genomes of 13 pre-Neolithic hunter-gatherers (HGs) and 21 Neolithic farmers (NFs) individuals from West and North Eurasia, published by six different laboratories and with coverage c.1×-58× (median = 9×). We used epiPALEOMIX and a Monte Carlo normalization scheme to estimate methylation levels per genome. Our paleomethylome dataset showed expected genome-wide methylation patterns such as CpG island hypomethylation. However, analyzing the data using various approaches did not yield any systematic signals for subsistence type, genetic sex, or tissue effects. Comparing the HG-NF methylation differences in our dataset with methylation differences between hunter-gatherers versus farmers in modern-day Central Africa also did not yield consistent results. Meanwhile, paleomethylome profiles did cluster strongly by their laboratories of origin. Using larger data volumes, minimizing technical noise and/or using alternative protocols may be necessary for capturing subtle environment-related biological signals from paleomethylomes.

2.
Mol Ecol ; 33(14): e17440, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38946459

RESUMEN

We present palaeogenomes of three morphologically unidentified Anatolian equids dating to the first millennium BCE, sequenced to a coverage of 0.6-6.4×. Mitochondrial DNA haplotypes of the Anatolian individuals clustered with those of Equus hydruntinus (or Equus hemionus hydruntinus), the extinct European wild ass, secular name 'hydruntine'. Further, the Anatolian wild ass whole genome profiles fell outside the genomic diversity of other extant and past Asiatic wild ass (E. hemionus) lineages. These observations suggest that the three Anatolian wild asses represent hydruntines, making them the latest recorded survivors of this lineage, about a millennium later than the latest observations in the zooarchaeological record. Our mitogenomic and genomic analyses indicate that E. h. hydruntinus was a clade belonging to ancient and present-day E. hemionus lineages that radiated possibly between 0.6 and 0.8 Mya. We also find evidence consistent with recent gene flow between hydruntines and Middle Eastern wild asses. Analyses of genome-wide heterozygosity and runs of homozygosity suggest that the Anatolian wild ass population may have lost genetic diversity by the mid-first millennium BCE, a possible sign of its eventual demise.


Asunto(s)
ADN Mitocondrial , Flujo Génico , Haplotipos , Filogenia , Animales , ADN Mitocondrial/genética , Haplotipos/genética , Equidae/genética , Genoma Mitocondrial , Extinción Biológica , Fósiles , Genética de Población , Variación Genética
3.
Genome Biol Evol ; 16(6)2024 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-38795367

RESUMEN

Sheep are among the earliest domesticated livestock species, with a wide variety of breeds present today. However, it remains unclear how far back this diversity goes, with formal documentation only dating back a few centuries. North European short-tailed (NEST) breeds are often assumed to be among the oldest domestic sheep populations, even thought to represent relicts of the earliest sheep expansions during the Neolithic period reaching Scandinavia <6,000 years ago. This study sequenced the genomes (up to 11.6X) of five sheep remains from the Baltic islands of Gotland and Åland, dating from the Late Neolithic (∼4,100 cal BP) to historical times (∼1,600 CE). Our findings indicate that these ancient sheep largely possessed the genetic characteristics of modern NEST breeds, suggesting a substantial degree of long-term continuity of this sheep type in the Baltic Sea region. Despite the wide temporal spread, population genetic analyses show high levels of affinity between the ancient genomes and they also exhibit relatively high genetic diversity when compared to modern NEST breeds, implying a loss of diversity in most breeds during the last centuries associated with breed formation and recent bottlenecks. Our results shed light on the development of breeds in Northern Europe specifically as well as the development of genetic diversity in sheep breeds, and their expansion from the domestication center in general.


Asunto(s)
Genoma , Animales , Ovinos/genética , Variación Genética , Oveja Doméstica/genética , ADN Antiguo/análisis
4.
Genome Biol Evol ; 16(5)2024 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-38670119

RESUMEN

Once widespread in their homelands, the Anatolian mouflon (Ovis gmelini anatolica) and the Cyprian mouflon (Ovis gmelini ophion) were driven to near extinction during the 20th century and are currently listed as endangered populations by the International Union for Conservation of Nature. While the exact origins of these lineages remain unclear, they have been suggested to be close relatives of domestic sheep or remnants of proto-domestic sheep. Here, we study whole genome sequences of n = 5 Anatolian mouflons and n = 10 Cyprian mouflons in terms of population history and diversity, comparing them with eight other extant sheep lineages. We find reciprocal genetic affinity between Anatolian and Cyprian mouflons and domestic sheep, higher than all other studied wild sheep genomes, including the Iranian mouflon (O. gmelini). Studying diversity indices, we detect a considerable load of short runs of homozygosity blocks (<2 Mb) in both Anatolian and Cyprian mouflons, reflecting small effective population size (Ne). Meanwhile, Ne and mutation load estimates are lower in Cyprian compared with Anatolian mouflons, suggesting the purging of recessive deleterious variants in Cyprian sheep under a small long-term Ne, possibly attributable to founder effects, island isolation, introgression from domestic lineages, or differences in their bottleneck dynamics. Expanding our analyses to worldwide wild and feral Ovis genomes, we observe varying viability metrics among different lineages and a limited consistency between viability metrics and International Union for Conservation of Nature conservation status. Factors such as recent inbreeding, introgression, and unique population dynamics may have contributed to the observed disparities.


Asunto(s)
Especies en Peligro de Extinción , Oveja Doméstica , Animales , Ovinos/genética , Oveja Doméstica/genética , Genoma , Variación Genética
5.
Mol Ecol Resour ; 24(5): e13960, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38676702

RESUMEN

There is growing interest in uncovering genetic kinship patterns in past societies using low-coverage palaeogenomes. Here, we benchmark four tools for kinship estimation with such data: lcMLkin, NgsRelate, KIN, and READ, which differ in their input, IBD estimation methods, and statistical approaches. We used pedigree and ancient genome sequence simulations to evaluate these tools when only a limited number (1 to 50 K, with minor allele frequency ≥0.01) of shared SNPs are available. The performance of all four tools was comparable using ≥20 K SNPs. We found that first-degree related pairs can be accurately classified even with 1 K SNPs, with 85% F1 scores using READ and 96% using NgsRelate or lcMLkin. Distinguishing third-degree relatives from unrelated pairs or second-degree relatives was also possible with high accuracy (F1 > 90%) with 5 K SNPs using NgsRelate and lcMLkin, while READ and KIN showed lower success (69 and 79% respectively). Meanwhile, noise in population allele frequencies and inbreeding (first-cousin mating) led to deviations in kinship coefficients, with different sensitivities across tools. We conclude that using multiple tools in parallel might be an effective approach to achieve robust estimates on ultra-low-coverage genomes.


Asunto(s)
Benchmarking , Linaje , Polimorfismo de Nucleótido Simple , Benchmarking/métodos , Humanos , Frecuencia de los Genes , ADN Antiguo/análisis , Simulación por Computador , Genética de Población/métodos , Biología Computacional/métodos
6.
Biotechniques ; 76(5): 216-223, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38530148

RESUMEN

Ancient DNA (aDNA) obtained from human remains is typically fragmented and present in relatively low amounts. Here we investigate a set of optimal methods for producing aDNA data by comparing silica-based DNA extraction and aDNA library preparation protocols. We also test the efficiency of whole-genome enrichment (WGC) on ancient human samples by modifying a number of parameter combinations. We find that the Dabney extraction protocol performs significantly better than alternatives. We further observed a positive trend with the BEST library protocol indicating lower clonality. Notably, our results suggest that WGC is effective at retrieving endogenous DNA, particularly from poorly-preserved human samples, by increasing human endogenous proportions by 5x. Thus, aDNA studies will be most likely to benefit from our results.


Asunto(s)
ADN Antiguo , Genoma Humano , ADN Antiguo/análisis , ADN Antiguo/aislamiento & purificación , Humanos , Genoma Humano/genética , Biblioteca de Genes , Análisis de Secuencia de ADN/métodos , Dióxido de Silicio/química
7.
Sci Rep ; 13(1): 21133, 2023 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-38036582

RESUMEN

This study re-examines the linguistic phylogeny of the South Caucasian linguistic family (aka the Kartvelian linguistic family) and attempts to identify its Urheimat. We apply Bayesian phylogenetics to infer a dated phylogeny of the South Caucasian languages. We infer the Urheimat and the reasons for the split of the Kartvelian languages by taking into consideration (1) the past distribution ranges of wildlife elements whose names can be traced back to proto-Kartvelian roots, (2) the distribution ranges of past cultures and (3) the genetic variations of past and extant human populations. Our best-fit Bayesian phylogenetic model is in agreement with the widely accepted topology suggested by previous studies. However, in contrast to these studies, our model suggests earlier mean split dates, according to which the divergence between Svan and Karto-Zan occurred in the early Copper Age, while Georgian and Zan diverged in the early Iron Age. The split of Zan into Megrelian and Laz is widely attributed to the spread of Georgian and/or Georgian speakers in the seventh-eighth centuries CE. Our analyses place the Kartvelian Urheimat in an area that largely intersects the Colchis glacial refugium in the South Caucasus. The divergence of Kartvelian languages is strongly associated with differences in the rate of technological expansions in relation to landscape heterogeneity, as well as the emergence of state-run communities. Neolithic societies could not colonize dense forests, whereas Copper Age societies made limited progress in this regard, but not to the same degree of success achieved by Bronze and Iron Age societies. The paper also discusses the importance of glacial refugia in laying the foundation for linguistic families and where Indo-European languages might have originated.


Asunto(s)
Ecosistema , Genética de Población , Humanos , Filogenia , Teorema de Bayes , Lenguaje
8.
Mol Phylogenet Evol ; 189: 107925, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37709182

RESUMEN

Among vertebrates, obligate parthenogenesis is only found in Squamata, where it always has a hybrid origin and a few lizard genera contain most of the known hybridogenous parthenogenetic taxa. Parthenogenesis thus seems to be pre-conditioned at the genus level, but it is not clear how often the encounter between two parental sexually reproducing species can result in the parthenogenetic offspring, nor whether the success of such hybridization event requires certain conditions or the specific time frame. To address this question, we studied the rock lizards of genus Darevskia, where a pair of parental species, D. valentini and D. raddei, as well as their parthenogenetic daughter species D. bendimahiensis and D. sapphirina, are found in close proximity NE of the Lake Van in East Anatolia. Using ddRAD-seq genotyping on 19 parental and 18 hybrid individuals, we found that (i) all parthenogenetic individuals from both D. bendimahiensis and D. sapphirina have a monophyletic origin tracing back to a single initial hybrid population, but their current genetic variation is geographically structured; (ii) unlike the most probable paternal ancestor, the genetically closest extant population of the maternal ancestor is not the geographically nearest one; and (iii) in the parthenogens, about 1% of loci carry multiple haplotypes, frequently differentiated by multiple substitutions. This pattern, in addition to biases in the relative frequency of haplotypes of maternal and paternal origin, does not appear compatible with a scenario of the entire parthenogenic clonal population having descended from a single pair of parental individuals. Instead, the data suggest that multiple parental individual ancestries still persist in the parthenogenetic gene pool. This supports the notion that although hybridization leading to parthenogenesis is generally rare at the level of species, it may be more common at the individual/population level once the right conditions are met.


Asunto(s)
Lagartos , Humanos , Animales , Filogenia , Turquía , Lagartos/genética , Haplotipos , Partenogénesis/genética
10.
Proc Natl Acad Sci U S A ; 120(4): e2209480119, 2023 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-36649403

RESUMEN

Around 10,000 y ago in southwest Asia, the cessation of a mobile lifestyle and the emergence of the first village communities during the Neolithic marked a fundamental change in human history. The first communities were small (tens to hundreds of individuals) but remained semisedentary. So-called megasites appeared soon after, occupied by thousands of more sedentary inhabitants. Accompanying this shift, the material culture and ancient ecological data indicate profound changes in economic and social behavior. A shift from residential to logistical mobility and increasing population size are clear and can be explained by either changes in fertility and/or aggregation of local groups. However, as sedentism increased, small early communities likely risked inbreeding without maintaining or establishing exogamous relationships typical of hunter-gatherers. Megasites, where large populations would have made endogamy sustainable, could have avoided this risk. To examine the role of kinship practices in the rise of megasites, we measured strontium and oxygen isotopes in tooth enamel from 99 individuals buried at Pinarbasi, Boncuklu, and Çatalhöyük (Turkey) over 7,000 y. These sites are geographically proximate and, critically, span both early sedentary behaviors (Pinarbasi and Boncuklu) and the rise of a local megasite (Çatalhöyük). Our data are consistent with the presence of only local individuals at Pinarbasi and Boncuklu, whereas at Çatalhöyük, several nonlocals are present. The Çatalhöyük data stand in contrast to other megasites where bioarchaeological evidence has pointed to strict endogamy. These different kinship behaviors suggest that megasites may have arisen by employing unique, community-specific kinship practices.


Asunto(s)
Estilo de Vida , Conducta Social , Humanos , Historia Antigua , Turquía , Estroncio , Conducta Sedentaria
11.
PLoS Comput Biol ; 18(12): e1010788, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36516232

RESUMEN

To date, ancient genome analyses have been largely confined to the study of single nucleotide polymorphisms (SNPs). Copy number variants (CNVs) are a major contributor of disease and of evolutionary adaptation, but identifying CNVs in ancient shotgun-sequenced genomes is hampered by typical low genome coverage (<1×) and short fragments (<80 bps), precluding standard CNV detection software to be effectively applied to ancient genomes. Here we present CONGA, tailored for genotyping CNVs at low coverage. Simulations and down-sampling experiments suggest that CONGA can genotype deletions >1 kbps with F-scores >0.75 at ≥1×, and distinguish between heterozygous and homozygous states. We used CONGA to genotype 10,002 outgroup-ascertained deletions across a heterogenous set of 71 ancient human genomes spanning the last 50,000 years, produced using variable experimental protocols. A fraction of these (21/71) display divergent deletion profiles unrelated to their population origin, but attributable to technical factors such as coverage and read length. The majority of the sample (50/71), despite originating from nine different laboratories and having coverages ranging from 0.44×-26× (median 4×) and average read lengths 52-121 bps (median 69), exhibit coherent deletion frequencies. Across these 50 genomes, inter-individual genetic diversity measured using SNPs and CONGA-genotyped deletions are highly correlated. CONGA-genotyped deletions also display purifying selection signatures, as expected. CONGA thus paves the way for systematic CNV analyses in ancient genomes, despite the technical challenges posed by low and variable genome coverage.


Asunto(s)
Variaciones en el Número de Copia de ADN , Genómica , Humanos , Variaciones en el Número de Copia de ADN/genética , Genotipo , Genómica/métodos , Genoma Humano/genética , Genética de Población , Polimorfismo de Nucleótido Simple/genética
12.
Acta Neuropathol Commun ; 10(1): 175, 2022 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-36451207

RESUMEN

The possible role of somatic copy number variations (CNVs) in Alzheimer's disease (AD) aetiology has been controversial. Although cytogenetic studies suggested increased CNV loads in AD brains, a recent single-cell whole-genome sequencing (scWGS) experiment, studying frontal cortex brain samples, found no such evidence. Here we readdressed this issue using low-coverage scWGS on pyramidal neurons dissected via both laser capture microdissection (LCM) and fluorescence activated cell sorting (FACS) across five brain regions: entorhinal cortex, temporal cortex, hippocampal CA1, hippocampal CA3, and the cerebellum. Among reliably detected somatic CNVs identified in 1301 cells obtained from the brains of 13 AD patients and 7 healthy controls, deletions were more frequent compared to duplications. Interestingly, we observed slightly higher frequencies of CNV events in cells from AD compared to similar numbers of cells from controls (4.1% vs. 1.4%, or 0.9% vs. 0.7%, using different filtering approaches), although the differences were not statistically significant. On the technical aspects, we observed that LCM-isolated cells show higher within-cell read depth variation compared to cells isolated with FACS. To reduce within-cell read depth variation, we proposed a principal component analysis-based denoising approach that significantly improves signal-to-noise ratios. Lastly, we showed that LCM-isolated neurons in AD harbour slightly more read depth variability than neurons of controls, which might be related to the reported hyperploid profiles of some AD-affected neurons.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/genética , Variaciones en el Número de Copia de ADN , Neuronas , Corteza Entorrinal , Encéfalo
13.
Sci Adv ; 8(44): eabo3609, 2022 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-36332018

RESUMEN

Upper Mesopotamia played a key role in the Neolithic Transition in Southwest Asia through marked innovations in symbolism, technology, and diet. We present 13 ancient genomes (c. 8500 to 7500 cal BCE) from Pre-Pottery Neolithic Çayönü in the Tigris basin together with bioarchaeological and material culture data. Our findings reveal that Çayönü was a genetically diverse population, carrying mixed ancestry from western and eastern Fertile Crescent, and that the community received immigrants. Our results further suggest that the community was organized along biological family lines. We document bodily interventions such as head shaping and cauterization among the individuals examined, reflecting Çayönü's cultural ingenuity. Last, we identify Upper Mesopotamia as the likely source of eastern gene flow into Neolithic Anatolia, in line with material culture evidence. We hypothesize that Upper Mesopotamia's cultural dynamism during the Neolithic Transition was the product not only of its fertile lands but also of its interregional demographic connections.

14.
Elife ; 112022 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-35098922

RESUMEN

Developmental trajectories of gene expression may reverse in their direction during ageing, a phenomenon previously linked to cellular identity loss. Our analysis of cerebral cortex, lung, liver, and muscle transcriptomes of 16 mice, covering development and ageing intervals, revealed widespread but tissue-specific ageing-associated expression reversals. Cumulatively, these reversals create a unique phenomenon: mammalian tissue transcriptomes diverge from each other during postnatal development, but during ageing, they tend to converge towards similar expression levels, a process we term Divergence followed by Convergence (DiCo). We found that DiCo was most prevalent among tissue-specific genes and associated with loss of tissue identity, which is confirmed using data from independent mouse and human datasets. Further, using publicly available single-cell transcriptome data, we showed that DiCo could be driven both by alterations in tissue cell-type composition and also by cell-autonomous expression changes within particular cell types.


Asunto(s)
Envejecimiento , Transcriptoma , Envejecimiento/genética , Animales , Hígado , Mamíferos/genética , Ratones
15.
Open Res Eur ; 2: 100, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-37829208

RESUMEN

A major challenge in zooarchaeology is to morphologically distinguish closely related species' remains, especially using small bone fragments. Shotgun sequencing aDNA from archeological remains and comparative alignment to the candidate species' reference genomes will only apply when reference nuclear genomes of comparable quality are available, and may still fail when coverages are low. Here, we propose an alternative method, MTaxi, that uses highly accessible mitochondrial DNA (mtDNA) to distinguish between pairs of closely related species from ancient DNA sequences. MTaxi utilises mtDNA transversion-type substitutions between pairs of candidate species, assigns reads to either species, and performs a binomial test to determine the sample taxon. We tested MTaxi on sheep/goat and horse/donkey data, between which zooarchaeological classification can be challenging in ways that epitomise our case. The method performed efficiently on simulated ancient genomes down to 0.3x mitochondrial coverage for both sheep/goat and horse/donkey, with no false positives. Trials on n=18 ancient sheep/goat samples and n=10 horse/donkey samples of known species identity also yielded 100% accuracy. Overall, MTaxi provides a straightforward approach to classify closely related species that are difficult to distinguish through zooarchaeological methods using low coverage aDNA data, especially when similar quality reference genomes are unavailable. MTaxi is freely available at https://github.com/goztag/MTaxi.

16.
17.
Commun Biol ; 4(1): 1279, 2021 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-34773064

RESUMEN

Sheep were among the first domesticated animals, but their demographic history is little understood. Here we analyzed nuclear polymorphism and mitochondrial data (mtDNA) from ancient central and west Anatolian sheep dating from Epipaleolithic to late Neolithic, comparatively with modern-day breeds and central Asian Neolithic/Bronze Age sheep (OBI). Analyzing ancient nuclear data, we found that Anatolian Neolithic sheep (ANS) are genetically closest to present-day European breeds relative to Asian breeds, a conclusion supported by mtDNA haplogroup frequencies. In contrast, OBI showed higher genetic affinity to present-day Asian breeds. These results suggest that the east-west genetic structure observed in present-day breeds had already emerged by 6000 BCE, hinting at multiple sheep domestication episodes or early wild introgression in southwest Asia. Furthermore, we found that ANS are genetically distinct from all modern breeds. Our results suggest that European and Anatolian domestic sheep gene pools have been strongly remolded since the Neolithic.


Asunto(s)
ADN Antiguo/análisis , ADN Mitocondrial/análisis , Domesticación , Polimorfismo Genético , Oveja Doméstica/genética , Animales , Arqueología , Núcleo Celular , Demografía , Turquía
18.
Curr Biol ; 31(17): 3925-3934.e8, 2021 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-34216555

RESUMEN

The history of human inbreeding is controversial.1 In particular, how the development of sedentary and/or agricultural societies may have influenced overall inbreeding levels, relative to those of hunter-gatherer communities, is unclear.2-5 Here, we present an approach for reliable estimation of runs of homozygosity (ROHs) in genomes with ≥3× mean sequence coverage across >1 million SNPs and apply this to 411 ancient Eurasian genomes from the last 15,000 years.5-34 We show that the frequency of inbreeding, as measured by ROHs, has decreased over time. The strongest effect is associated with the Neolithic transition, but the trend has since continued, indicating a population size effect on inbreeding prevalence. We further show that most inbreeding in our historical sample can be attributed to small population size instead of consanguinity. Cases of high consanguinity were rare and only observed among members of farming societies in our sample. Despite the lack of evidence for common consanguinity in our ancient sample, consanguineous traditions are today prevalent in various modern-day Eurasian societies,1,35-37 suggesting that such practices may have become widespread within the last few millennia.


Asunto(s)
Endogamia , Polimorfismo de Nucleótido Simple , Consanguinidad , Homocigoto , Humanos
19.
Sci Adv ; 7(2)2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33523963

RESUMEN

We present genome-wide data from 40 individuals dating to c.16,900 to 550 years ago in northeast Asia. We describe hitherto unknown gene flow and admixture events in the region, revealing a complex population history. While populations east of Lake Baikal remained relatively stable from the Mesolithic to the Bronze Age, those from Yakutia and west of Lake Baikal witnessed major population transformations, from the Late Upper Paleolithic to the Neolithic, and during the Bronze Age, respectively. We further locate the Asian ancestors of Paleo-Inuits, using direct genetic evidence. Last, we report the most northeastern ancient occurrence of the plague-related bacterium, Yersinia pestis Our findings indicate the highly connected and dynamic nature of northeast Asia populations throughout the Holocene.

20.
Nature ; 591(7849): 265-269, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33597750

RESUMEN

Temporal genomic data hold great potential for studying evolutionary processes such as speciation. However, sampling across speciation events would, in many cases, require genomic time series that stretch well back into the Early Pleistocene subepoch. Although theoretical models suggest that DNA should survive on this timescale1, the oldest genomic data recovered so far are from a horse specimen dated to 780-560 thousand years ago2. Here we report the recovery of genome-wide data from three mammoth specimens dating to the Early and Middle Pleistocene subepochs, two of which are more than one million years old. We find that two distinct mammoth lineages were present in eastern Siberia during the Early Pleistocene. One of these lineages gave rise to the woolly mammoth and the other represents a previously unrecognized lineage that was ancestral to the first mammoths to colonize North America. Our analyses reveal that the Columbian mammoth of North America traces its ancestry to a Middle Pleistocene hybridization between these two lineages, with roughly equal admixture proportions. Finally, we show that the majority of protein-coding changes associated with cold adaptation in woolly mammoths were already present one million years ago. These findings highlight the potential of deep-time palaeogenomics to expand our understanding of speciation and long-term adaptive evolution.


Asunto(s)
ADN Antiguo/análisis , Evolución Molecular , Genoma Mitocondrial/genética , Genómica , Mamuts/genética , Filogenia , Aclimatación/genética , Alelos , Animales , Teorema de Bayes , ADN Antiguo/aislamiento & purificación , Elefantes/genética , Europa (Continente) , Femenino , Fósiles , Variación Genética/genética , Cadenas de Markov , Diente Molar , América del Norte , Datación Radiométrica , Siberia , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA