Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 428
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Front Microbiol ; 15: 1425441, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39268534

RESUMEN

Introduction: Reactive oxygen species (ROS) generation is a common disease defense mechanism in plants. However, it is unclear whether Citrus host activates defense response against Diaporthe citri causing citrus melanose disease by producing ROS, and the underlying molecular mechanisms are unknown. Methods: DAB staining and RNA-Seq technology were used to compare the active oxygen burst and differential gene expression, respectively, in uninfected and infected Citrus sinensis leaves at different time points during D. citri infection in vivo. The functions of CsRBOH (a significant DEG) were confirmed in N. benthamiana through the Agrobacterium-mediated transient expression system. Results: DAB staining indicated that C. sinensis initiated defense against D. citri infection within 24 h by generating ROS. Illumina sequencing revealed 25,557 expressed genes of C. sinensis. The most upregulated DEGs (n = 1,570) were identified 72 h after fungal inoculation (sample denoted as CD72). In the CD72 vs. Cs (samples at 0 h after fungal inoculation) comparison, the KEGG pathway category with the highest number of genes (n = 62) and most significant enrichment was Protein processing in endoplasmic reticulum, followed by Glutathione metabolism and MAPK signaling pathway-plant. GO analysis revealed that the DEGs of CD72 vs. Cs related to active oxygen burst and chitin recognition were significantly grouped into the regulation of biological processes and molecular functions, with GO terms including response to ROS, response to fungus, and oxidoreductase activity. Remarkably, CsRBOH was significantly enriched in the GO and KEGG analyses, and its expression pattern in qRT-PCR and DAB staining results were consistent. Among the 63 ROS-related DEGs, HSP genes and genes associated with the peroxidase family were highly significant as revealed by protein-protein interaction networks. Furthermore, ROS accumulation, cell death, and upregulation of defense-related genes were observed in N. benthamiana leaves with CsRBOH expressed through the Agrobacterium-mediated transient expression system. Conclusion: Our findings suggested that C. sinensis activates CsRBOH and ROS-related genes, leading to ROS accumulation to resist the invasion by D. citri. This study laid the foundation for future research on molecular mechanisms and breeding of C. sinensis cultivars resistant to citrus melanose.

2.
Diabetes Metab Syndr Obes ; 17: 2855-2867, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39100967

RESUMEN

Purpose: Luteolin is a promising candidate for diabetic nephropathy due to its potential anti-inflammatory and anti-fibrotic properties. This study explored the molecular mechanisms through which luteolin combats fibrosis in DN. Methods: Potential targets affected by luteolin and genes associated with DN were collected from databases. Overlapping targets between luteolin and diabetic nephropathy were identified through Venn analysis. A protein-protein interaction network was constructed using these common targets, and critical pathways and targets were elucidated through GO and KEGG analysis. These pathways and targets were confirmed using a streptozotocin-induced mouse model. Luteolin was administered at 45 mg/kg and 90 mg/kg. Various parameters were evaluated, including body weight, blood glucose levels, and histopathological examinations. Protein levels related to energy metabolism, inflammation, and fibrosis were quantified. Results: Fifty-three targets associated with luteolin and 36 genes related to diabetic nephropathy were extracted. The AGE-RAGE signaling pathway was the key pathway impacted by luteolin in diabetic nephropathy. Key molecular targets include TGF-ß, IL-1ß, and PPARG. Luteolin reduced body weight and blood glucose levels, lowered the left kidney index, and improved insulin and glucose tolerance. Furthermore, luteolin mitigated inflammatory cell infiltration, basement membrane thickening, and collagen deposition in the kidney. Luteolin up-regulated the protein expression of p-AMPKα (Th172) while simultaneously down-regulated the protein expression of p-NF-ĸB (p65), NLRP3, TGF-ß1, α-SMA, and Collagen I. Conclusion: Luteolin mitigated renal fibrosis by alleviating energy metabolism disruptions and inflammation by modulating the AMPK/NLRP3/TGF-ß signaling pathway.

3.
Artículo en Inglés | MEDLINE | ID: mdl-39171465

RESUMEN

BACKGROUND: Angelica sinensis (Oliv.) Diels, a renowned traditional Chinese medicine, has gained widespread recognition for its antitumor properties. Further investigation is warranted to determine whether ligustilide (LIG), which is extracted from this plant, can effectively inhibit tumors. OBJECTIVE: We delved into the impact of LIG on cholangiocarcinoma cells, aiming to unravel the mechanisms underlying its effects. MATERIALS AND METHODS: Cholangiocarcinoma cells (HuccT1 and RBE) were exposed to varying concentrations of LIG (2, 5, 10, 15, 20 µg/mL) for 24, 48, and 72 h. After identifying differentially expressed genes, stable transcription strains were utilized to explore LIG's antitumor mechanism. The inhibitory effects of LIG (5 µg/mL, 48 h) were assessed by CCK-8, colony formation, wound healing, transwell migration, western blotting, and immunofluorescence. In vivo, experiments in NOG mice (Ac, Ac+LIG; five per group) evaluated LIG's antiproliferative efficacy (5 mg/kg, intraperitoneal injection, 18-day period). RESULTS: LIG significantly inhibited cell proliferation and migration with IC50 5.08 and 5.77 µg/mL in HuccT1 and RBE cell lines at 48h, increased the expression of E-cadherin while decreased N-cadherin and the protein of PI3K/AKT pathway. Silenced NDRG1 (N-Myc downstream- regulated gene 1) attenuated these effects. In vivo, the AC+LIG group (LIG, 5 mg/kg, qd, 18 d) exhibited smaller tumor volumes compared to the Ac group. The expression of Ki-67 was significantly downregulated in the AC+LIG group. CONCLUSION: For the first time, our study has revealed that LIG holds therapeutic potential for treating cholangiocarcinoma. These findings hold promise for advancing innovative therapeutic approaches in the treatment of cholangiocarcinoma. LIG may serve as a useful patent for treating CCA.

4.
Macromol Rapid Commun ; : e2400527, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39137308

RESUMEN

With the widespread application of highly integrated electronic devices, the urgent development of multifunctional polymer-based composite materials with high electromagnetic interference shielding effectiveness (EMI SE) and thermal conductivity capabilities is critically essential. Herein, a graphene/carbon felt/polyimide (GCF/PI) composite is prepared through constructing 3D van der Waals heterostructure by heating carbon felt and graphene at high temperature. The GCF-3/PI composite exhibits the highest through-plane thermal conductivity with 1.31 W·m-1·K-1, when the content of carbon felt and graphene is 14.1 and 1.4 wt.%, respectively. The GCF-3/PI composite material achieves a thermal conductivity that surpasses pure PI by 4.9 times. Additionally, GCF-3/PI composite shows an outstanding EMI SE of 69.4 dB compared to 33.1 dB for CF/PI at 12 GHz. The 3D van der Waals heterostructure constructed by carbon felt and graphene sheets is conducive to the formation of continuous networks, providing fast channels for the transmission of phonons and carriers. This study provides a guidance on the impact of 3D van der Waals heterostructures on the thermal and EMI shielding properties of composites.

5.
Biotechnol Biofuels Bioprod ; 17(1): 109, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39090744

RESUMEN

BACKGROUND: The 2-phenylethanol (2-PE) tolerance phenotype is crucial to the production of 2-PE, and Pdr1p mutation can significantly increase the tolerance of 2-PE in Saccharomyces cerevisiae. However, its underlying molecular mechanisms are still unclear, hindering the rational design of superior 2-PE tolerance performance. RESULTS: Here, the physiology and biochemistry of the PDR1_862 and 5D strains were analyzed. At 3.5 g/L 2-PE, the ethanol concentration of PDR1_862 decreased by 21%, and the 2-PE production of PDR1_862 increased by 16% than those of 5D strain. Transcriptome analysis showed that at 2-PE stress, Pdr1p mutation increased the expression of genes involved in the Ehrlich pathway. In addition, Pdr1p mutation attenuated sulfur metabolism and enhanced the one-carbon pool by folate to resist 2-PE stress. These metabolic pathways were closely associated with amino acids metabolism. Furthermore, at 3.5 g/L 2-PE, the free amino acids content of PDR1_862 decreased by 31% than that of 5D strain, among the free amino acids, cysteine was key amino acid for the enhancement of 2-PE stress tolerance conferred by Pdr1p mutation. CONCLUSIONS: The above results indicated that Pdr1p mutation enhanced the Ehrlich pathway to improve 2-PE production of S. cerevisiae, and Pdr1p mutation altered the intracellular amino acids contents, in which cysteine might be a biomarker in response to Pdr1p mutation under 2-PE stress. The findings help to elucidate the molecular mechanisms for 2-PE stress tolerance by Pdr1p mutation in S. cerevisiae, identify key metabolic pathway responsible for 2-PE stress tolerance.

6.
ACS Appl Mater Interfaces ; 16(35): 45821-45829, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39177358

RESUMEN

In situ self-assembly in living systems is referred to as the processes that regulate assembly by stimuli-responsive reactions at target sites under physiological conditions. Due to the advantages of precisely forming well-defined nanostructures at pathological lesions, in situ-formed assemblies with tailored bioactivity are promising for the development of next-generation biomedical agents. In this Perspective, we summarize the progress of in situ self-assembly of peptides in living cells with an emphasis on the state-of-the-art strategies regulating assembly processes, establishing complexity within assembly systems, and exploiting their applications in biomedicines. We also provide our forward conceiving perspectives on the challenges in the development of in situ assembly in living cells to demonstrate its great potential in creating biomaterials for healthcare in the future.


Asunto(s)
Materiales Biocompatibles , Humanos , Materiales Biocompatibles/química , Materiales Biocompatibles/síntesis química , Materiales Biocompatibles/farmacología , Nanoestructuras/química , Péptidos/química , Péptidos/síntesis química , Animales
7.
Mol Cell Probes ; 77: 101981, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39197503

RESUMEN

The clinical treatment of hepatocellular carcinoma (HCC) is still a heavy burden worldwide. Intracellular microRNAs (miRNAs) commonly express abnormally in cancers, thus they are potential therapeutic targets for cancer treatment. miR-21 is upregulated in HCC whereas miR-122 is enriched in normal hepatocyte but downregulated in HCC. In our study, we first generated a reporter genetic switch compromising of miR-21 and miR-122 sponges as sensor, green fluorescent protein (GFP) as reporter gene and L7Ae:K-turn as regulatory element. The reporter expression was turned up in miR-21 enriched environment while turned down in miR-122 enriched environment, indicating that the reporter switch is able to respond distinctly to different miRNA environment. Furthermore, an AAT promoter, which is hepatocyte-specific, is applied to increase the specificity to hepatocyte. A killing switch with AAT promoter and an apoptosis-inducing element, Bax, in addition to miR-21 and miR-122 significantly inhibited cell viability in Huh-7 by 70 % and in HepG2 by 60 %. By contrast, cell viability was not affected in five non-HCC cells. Thus, we provide a novel feasible strategy to improve the safety of miRNA-based therapeutic agent to cancer.

8.
J Exp Bot ; 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39046351

RESUMEN

Biosynthesis of the phytoalexins scopoletin and scopolin in Nicotiana species is regulated by upstream signals including jasmonate (JA), ethylene (ET) and NaWRKY3 in response to the necrotrophic fungus Alternaria alternata, which causes brown spot disease. However, how these signals are coordinated to regulate these phytoalexins remains unknown. By analyzing RNA sequencing data and RNA interference, we identified NaERF1B-like (NaERF1B-L) as a key player in Nicotiana attenuata during A. alternata infection by regulating the transcripts of Feruloyl-CoA 6'-hydroxylase 1 (NaF6'H1), encoding a key enzyme for scopoletin biosynthesis, and NaVS1-like (NaVS1-L), a putative biosynthetic gene of the phytoalexin solavetivone. We further demonstrated that the synergistic induction of these two genes by JA and ET signaling is mediated by NaERF1B-L. Additionally, we found that the two closely related proteins NaWRKY6 and NaWRKY3 physically interact to enhance NaERF1B-L expression by directly binding and activating the NaERF1B-L promoter. Collectively, our current results demonstrate that NaERF1B-L plays a positive role in resistance to A. alternata by modulating phytoalexins biosynthesis through the integration of JA/ET and NaWRKY6/3 signaling. Our findings reveal a fine-tuned transcriptional regulatory hierarchy mediated by NaERF1B-L for brown spot disease resistance in wild tobacco.

9.
Mol Neurobiol ; 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39017976

RESUMEN

Myasthenia gravis (MG) is an autoimmune disease mediated by autoantibodies. The important roles of circRNAs modified by m6A methylation have been reported in the pathogenesis of other autoimmune diseases, but remain unclear in MG. To address this point, we collected peripheral blood mononuclear cells from six MG patients and six healthy controls and performed m6A­circRNA epitranscriptomic microarray and RNA sequencing. Differentially m6A-modified circRNAs and differentially expressed genes (DEGs) were analyzed. A network was constructed containing 17 circRNAs, 30 miRNAs, and 34 DEGs. The GSE85452 dataset was downloaded. DEGs that were differentially expressed in the GSE85452 dataset were selected as seed genes. Finally, four candidate m6A-modified circRNAs (hsa_circ_0084735, hsa_circ_0018652, hsa_circ_0025731, and hsa_circ_0030997) were identified through a random walk with restart. We found that they had different degree correlations with different immune cells. The results of MeRIP-qPCR showed that the m6A methylated levels of hsa_circ_0084735 and hsa_circ_0025731 were downregulated in MG patients, while the other two circRNAs were not significantly different between MG and control group. For the first time, we explored the pathogenesis of MG at the epigenetic transcriptome level. Our results will open new perspectives for MG research and identify potential biomarkers and therapeutic targets for MG.

10.
Oncol Lett ; 28(2): 354, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38881710

RESUMEN

Clear cell renal cell carcinoma (ccRCC) is a common type of kidney cancer and accounts for 2-3% of all cancer cases. Furthermore, a growing number of immunotherapy approaches are being used in antitumor treatment. Signaling lymphocyte activation molecule family (SLAMF) members have been well studied in several cancers, whereas their roles in ccRCC have not been investigated. The present study comprehensively assessed the molecular mechanisms of SLAMF members in ccRCC, performed using The Cancer Genome Atlas database, with analysis of gene transcription, prognosis, biological function, clinical features, tumor-associated immune cells and the correlation with programmed cell death protein 1/programmed death-ligand 1 immune checkpoints. Simultaneously, the Tumor Immune Dysfunction and Exclusion algorithm was used to predict the efficacy of immune checkpoint blockade (ICB) therapy in patients with high and low SLAMF expression levels. The results demonstrated that all SLAMF members were highly expressed in ccRCC, and patients with high expression levels of SLAMF1, 4, 7 and 8 had a worse prognosis that those with low expression. SLAMF members were not only highly associated with immune activation but also with immunosuppressive agents. The level of immune cell infiltration was associated with the prognosis of patients with ccRCC with high SLAMF expression. Moreover, high ICB response rates were observed in patients with high expression levels of SMALF1 and 4. In summary, SLAMF members may serve as future potential biomarkers for predicting the prognosis of ccRCC and emerge as a novel immunotherapy target.

11.
Sci Rep ; 14(1): 11370, 2024 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-38762700

RESUMEN

According to the latest cancer research data, there are a significant number of new cancer cases and a substantial mortality rate each year. Although a substantial number of clinical patients are treated with existing cancer drugs each year, the efficacy is unsatisfactory. The incidence is still high and the effectiveness of most cancer drugs remains unsatisfactory. Therefore, we evaluated the human proteins for their causal relationship to for cancer risk and therefore also their potential as drug targets. We used summary tumors data from the FinnGen and cis protein quantitative trait loci (cis-pQTL) data from a genome-wide association study, and employed Mendelian randomization (MR) to explore the association between potential drug targets and nine tumors, including breast, colorectal, lung, liver, bladder, prostate, kidney, head and neck, pancreatic caners. Furthermore, we conducted MR analysis on external cohort. Moreover, Bidirectional MR, Steiger filtering, and colocalization were employed to validate the main results. The DrugBank database was used to discover potential drugs of tumors. Under the threshold of False discovery rate (FDR) < 0.05, results showed that S100A16 was protective protein and S100A14 was risk protein for human epidermal growth factor receptor 2-positive (HER-positive) breast cancer, phosphodiesterase 5A (PDE5A) was risk protein for colorectal cancer, and melanoma inhibitory activity (MIA) was protective protein for non-small cell lung carcinoma (NSCLC). And there was no reverse causal association between them. Colocalization analysis showed that S100A14 (PP.H4.abf = 0.920) and S100A16 (PP.H4.abf = 0.932) shared causal variation with HER-positive breast cancer, and PDE5A (PP.H4.abf = 0.857) shared causal variation with colorectal cancer (CRC). The MR results of all pQTL of PDE5A and MIA were consistent with main results. In addition, the MR results of MIA and external outcome cohort were consistent with main results. In this study, genetic predictions indicate that circulating S100 calcium binding protein A14 (S100A14) and S100 calcium binding protein A16 (S100A16) are associated with increase and decrease in the risk of HER-positive breast cancer, respectively. Circulating PDE5A is associated with increased risk of CRC, while circulating MIA is associated with decreased risk of NSCLC. These findings suggest that four proteins may serve as biomarkers for cancer prevention and as potential drug targets that could be expected for approval.


Asunto(s)
Estudio de Asociación del Genoma Completo , Análisis de la Aleatorización Mendeliana , Neoplasias , Humanos , Neoplasias/genética , Sitios de Carácter Cuantitativo , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Polimorfismo de Nucleótido Simple , Predisposición Genética a la Enfermedad
12.
Biochem Pharmacol ; : 116259, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38705538

RESUMEN

Mounting evidence from preclinical and clinical studies suggests that persistent inflammation functions as a driving force in the journey to cancer. Cyclooxygenase-2 (COX-2) is a key enzyme involved in inflammatory signaling. While being transiently upregulated upon inflammatory stimuli, COX-2 has been found to be consistently overexpressed in human colorectal cancer and several other malignancies. The association between chronic inflammation and cancer has been revisited: cancer can arise when inflammation fails to resolve. Besides its proinflammatory functions, COX-2 also catalyzes the production of pro-resolving as well as anti-inflammatory metabolites from polyunsaturated fatty acids. This may account for the side effects caused by long term use of some COX-2 inhibitory drugs during the cancer chemopreventive trials. This review summarizes the latest findings highlighting the dual functions of COX-2 in the context of its implications in the development, maintenance, and progression of cancer.

13.
J Proteomics ; 301: 105182, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38697284

RESUMEN

Calpain is a non-lysozyme, calcium-dependent intracellular cysteine protease that has been shown to play a role in tumor proliferation, survival, migration, invasion, and apoptosis. Dysregulation of calpain expression is closely related to tumorigenesis. However, the role of calpain-8 (CAPN8), as a member of the calpain family, in pancreatic cancer (PC) is remains unclear. In elucidating the mechanism of CAPN8 in PC, a comprehensive bioinformatics analysis and in vitro experiments were conducted. The TCGA database was used to explore the expression level of CAPN8, and the results in PC tissues and cell lines were verified. Then, the correlation between CAPN8 and clinicopathological features was analyzed. Additionaly, promoter methylation, immune infiltration, and GO/KEGG enrichment analyses were performed. Lastly, the molecular mechanism of CAPN8 in PC was investigated by using cell counting kit (CCK) 8, transwell, wound healing, Western blot assays, and so on. Results indicate that CAPN8 was highly expressed in PC and correlated with poor prognosis and advanced TNM stage. In addition, a low level of immune infiltration was closely associated with the high expression level of CAPN8. Based on these findings, we hypothesized that CAPN8 is a potential biomarker that regulates progression of PC via EMT and the AKT/ERK pathway. SIGNIFICANCE: Through comprehensive biological information and in vitro experiments, CAPN8 has been confirmed to play an important role in regulating pancreatic cancer (PC) proliferation, migration and invasion. CAPN8 is found to be closely related to the diagnosis, survival and prognosis of PC. Above all, CAPN8 may be a potential biomarker for the diagnosis and prognosis of PC.


Asunto(s)
Biomarcadores de Tumor , Calpaína , Transición Epitelial-Mesenquimal , Sistema de Señalización de MAP Quinasas , Neoplasias Pancreáticas , Proteínas Proto-Oncogénicas c-akt , Humanos , Calpaína/metabolismo , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/genética , Biomarcadores de Tumor/metabolismo , Biomarcadores de Tumor/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Masculino , Línea Celular Tumoral , Femenino , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica , Persona de Mediana Edad , Proliferación Celular , Pronóstico , Movimiento Celular
14.
Biosens Bioelectron ; 259: 116387, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38754194

RESUMEN

The incidence of esophageal cancer is positively associated with fumonisin contamination. It is necessary to develop methods for the rapid detection of fumonisins. In this work, a self-powered photoelectrochemical aptamer sensor based on ZnIn2S4/WO3 photoanode and Au@W-Co3O4 photocathode is proposed for the sensitive detection of fumonisin B1 (FB1). Among them, under visible light irradiation, the Z-type heterostructure of ZnIn2S4/WO3 acts as a photoanode to improve the electron transfer rate, which contributes to the enhancement of the photocathode signal and lays the foundation for a wider detection range. The Au@W-Co3O4 photocathode as a sensing interface reduces the probability of false positives (comparison of anode sensing platforms). The PEC sensor has a good working performance in the detection range (10 pg/mL-1000 ng/mL) with a detection limit of 2.7 pg/mL (S/N = 3). In addition, the sensor offers good selectivity, stability and excellent recoveries in real sample analysis. This work is expected to play a role in the field of analyzing environmental toxins.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Técnicas Electroquímicas , Fumonisinas , Límite de Detección , Fumonisinas/análisis , Fumonisinas/química , Aptámeros de Nucleótidos/química , Tungsteno/química , Electrodos , Óxidos/química , Oro/química , Humanos , Luz , Zinc/química
15.
New Phytol ; 242(3): 1289-1306, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38426573

RESUMEN

Jasmonate (JA) and abscisic acid (ABA) are two major phytohormones involved in pathogen resistance. However, how their biosynthesis is regulated is not well understood. We silenced NaWRKY70 in wild tobacco Nicotiana attenuata and determined its role in regulating genes involved in the production of JA, ABA and the phytoalexin capsidiol in response to the fungal pathogen Alternaria alternata using techniques including electrophoretic mobility shift, chromatin immunoprecipitation, transient overexpression and virus-induced gene silencing. Silencing NaWRKY70 dramatically reduced both basal and A. alternata-induced jasmonoyl-isoleucine (JA-Ile) and ABA. Further evidence showed that NaWRKY70 directly binds to the W-boxes of the promoters of NaAOS and NaJAR4 (JA biosynthesis), NaNCED1 and NaXD1-like (ABA biosynthesis), and NaMPK4 (ABA signaling) to activate their expression, while binding but repressing the expression of NaCYP707A4-like3 (ABA degradation). Additionally, NaWRKY70 regulates capsidiol production through its key enzyme genes NaEASs and NaEAHs, and interacts with its regulator NaERF2-like to enhance their expression, whereas ABA negatively regulates capsidiol biosynthesis. Our results highlight the key role of NaWRKY70 in controlling both JA-Ile and ABA production, as well as capsidiol production, thus providing new insight into the defense mechanism of plant resistance to A. alternata.


Asunto(s)
Alternaria , Isoleucina/análogos & derivados , Nicotiana , Reguladores del Crecimiento de las Plantas , Sesquiterpenos , Nicotiana/genética , Fitoalexinas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ciclopentanos/metabolismo , Ácido Abscísico/metabolismo , Oxilipinas/metabolismo , Regulación de la Expresión Génica de las Plantas
16.
FASEB J ; 38(5): e23436, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38430461

RESUMEN

Chronic kidney disease (CKD) is a global health burden, with ineffective therapies leading to increasing morbidity and mortality. Renal interstitial fibrosis is a common pathway in advanced CKD, resulting in kidney function and structure deterioration. In this study, we investigate the role of FTO-mediated N6-methyladenosine (m6A) and its downstream targets in the pathogenesis of renal fibrosis. M6A modification, a prevalent mRNA internal modification, has been implicated in various organ fibrosis processes. We use a mouse model of unilateral ureteral obstruction (UUO) as an in vivo model and treated tubular epithelial cells (TECs) with transforming growth factor (TGF)-ß1 as in vitro models. Our findings revealed increased FTO expression in UUO mouse model and TGF-ß1-treated TECs. By modulating FTO expression through FTO heterozygous mutation mice (FTO+/- ) in vivo and small interfering RNA (siRNA) in vitro, we observed attenuation of UUO and TGF-ß1-induced epithelial-mesenchymal transition (EMT), as evidenced by decreased fibronectin and N-cadherin accumulation and increased E-cadherin levels. Silencing FTO significantly improved UUO and TGF-ß1-induced inflammation, apoptosis, and inhibition of autophagy. Further transcriptomic assays identified RUNX1 as a downstream candidate target of FTO. Inhibiting FTO was shown to counteract UUO/TGF-ß1-induced RUNX1 elevation in vivo and in vitro. We demonstrated that FTO signaling contributes to the elevation of RUNX1 by demethylating RUNX1 mRNA and improving its stability. Finally, we revealed that the PI3K/AKT pathway may be activated downstream of the FTO/RUNX1 axis in the pathogenesis of renal fibrosis. In conclusion, identifying small-molecule compounds that target this axis could offer promising therapeutic strategies for treating renal fibrosis.


Asunto(s)
Adenina/análogos & derivados , Insuficiencia Renal Crónica , Obstrucción Ureteral , Ratones , Animales , Riñón/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Obstrucción Ureteral/metabolismo , Insuficiencia Renal Crónica/metabolismo , Fibrosis , Desmetilación , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/metabolismo
17.
Int J Mol Sci ; 25(6)2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38542267

RESUMEN

As one of the most abundant groups in marine fish families, Gobiidae fish are important fishery resources in China, and some are also invasive species in certain regions worldwide. However, the phylogenetic relationships of Gobiidae fish remain ambiguous, and the study of their invasion-related genes is still scarce. This study used high-throughput sequencing technology to conduct a whole-genome survey of five Gobiidae fish species: Acanthogobius flavimanus, Acanthogobius stigmothonus, Favonigobius gymnauchen, Ctenotrypauchen microcephalus, and Tridentiger barbatus. De novo assembly of five fish genomes was performed, and genomic traits were compared through K-mer analysis. Among the five Gobiidae fish genomes, F. gymnauchen had the largest genome size (1601.98 Mb) and the highest heterozygosity (1.56%) and repeat rates (59.83%). Phylogenetic studies showed that A. flavimanus was most closely linked to A. stigmothonus, while Apogonidae and Gobiidae were closely related families. PSMC analysis revealed that C. microcephalus experienced a notable population expansion than the other four fish species in the Early Holocene. By using the KOG, GO, and KEGG databases to annotate single-copy genes, the annotated genes of the five fish were mainly classified as "signal transduction mechanisms", "cellular process", "cellular anatomical entity", and "translation". Acanthogobius flavimanus, A. stigmothonus, and T. barbatus had more genes classified as "response to stimulus" and "localization", which may have played an important role in their invasive processes. Our study also provides valuable material about Gobiidae fish genomics and genetic evolution.


Asunto(s)
Genoma Mitocondrial , Perciformes , Humanos , Animales , Filogenia , Peces/genética , Perciformes/genética , Evolución Molecular
18.
Stem Cell Res ; 77: 103359, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38460235

RESUMEN

Parkinson's disease (PD) is a highly prevalent and severe neurodegenerative disease that affects more than 10 million individuals worldwide. Pathogenic mutations in LRP10 have been associated with autosomal dominant PD. Here, we report an induced pluripotent stem cell (iPSC) line generated from a PD patient harboring the LRP10 c.688C > T (p.Arg230Trp) variant. Skin fibroblasts from the PD patient were successfully reprogrammed into iPSCs that expressed pluripotency markers, a normal karyotype, and the capacity to differentiate into the three germ layers in vivo. This iPSC line is a potential resource for studying the pathogenic mechanisms of PD.


Asunto(s)
Células Madre Pluripotentes Inducidas , Mutación , Enfermedad de Parkinson , Células Madre Pluripotentes Inducidas/metabolismo , Humanos , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , Proteínas Relacionadas con Receptor de LDL/genética , Proteínas Relacionadas con Receptor de LDL/metabolismo , Línea Celular , Diferenciación Celular , Masculino
19.
Talanta ; 272: 125780, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38359722

RESUMEN

Mercury ion (Hg2+) poses a serious threat to human health due to its high toxicity. In this study, a smartphone-based photoelectrochemical sensor based on oxygen vacancies (OVs) driven signal enhancement for mercury ion detection was designed. BiVO4-x/Bi2S3/AuNPs were combined with T-Hg2+-T recognition mode to construct a multi-sandwich photoelectrochemical sensor. On the one hand, the OVs can increase the adsorption of light by the materials and enhance the photocurrent response as well as the superconductivity of Au NPs to accelerate the charge transfer at the electrode interface. On the other hand, the multi-sandwich structure was exploited to increase the binding site of Hg2+, as well as the T-Hg2+-T structure for sensitive recognition of Hg2+ and signal amplification. The sensor showed good linearity for Hg2+ concentration in the range of 0.1 nM-1.0 µM with a detection limit of 4.8 pM (S/N = 3). Eventually the smartphone-based real-time detection sensor is expected to contribute to the future analysis of heavy metal ions.

20.
Eur J Pharmacol ; 967: 176357, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38309677

RESUMEN

The chemokines/chemokine receptors pathway significantly influences cell migration, particularly in recruiting immune cells to the tumor microenvironment (TME), impacting tumor progression and treatment outcomes. Emerging research emphasizes the involvement of chemokines in drug resistance across various tumor therapies, including immunotherapy, chemotherapy, and targeted therapy. This review focuses on the role of chemokines/chemokine receptors in pancreatic cancer (PC) development, highlighting their impact on TME remodeling, immunotherapy, and relevant signaling pathways. The unique immunosuppressive microenvironment formed by the interaction of tumor cells, stromal cells and immune cells plays an important role in the tumor proliferation, invasion, migration and therapeutic resistance. Chemokines/chemokine receptors, such as chemokine ligand (CCL) 2, CCL3, CCL5, CCL20, CCL21, C-X-C motif chemokine ligand (CXCL) 1, CXCL2, CXCL3, CXCL4, CXCL5, CXCL8, CXCL9, CXCL10, CXCL11, CXCL12, CXCL13, CXCL14, CXCL16, CXCL17, and C-X3-C motif chemokine ligand (CX3CL)1, derived mainly from leukocyte cells, cancer-related fibroblasts (CAFs), pancreatic stellate cells (PSCs), and tumor-associated macrophages (TAMs), contribute to PC progression and treatment resistance. Chemokines recruit myeloid-derived suppressor cells (MDSC), regulatory T cells (Tregs), and M2 macrophages, inhibiting the anti-tumor activity of immune cells. Simultaneously, they enhance pathways like epithelial-mesenchymal transition (EMT), Akt serine/threonine kinase (AKT), extracellular regulated protein kinases (ERK) 1/2, and nuclear factor kappa-B (NF-κB), etc., elevating the risk of PC metastasis and compromising the efficacy of radiotherapy, chemotherapy, and anti-PD-1/PD-L1 immunotherapy. Notably, the CCLx-CCR2 and CXCLx-CXCR2/4 axis emerge as potential therapeutic targets in PC. This review integrates recent findings on chemokines and receptors in PC treatment, offering valuable insights for innovative therapeutic approaches.


Asunto(s)
Neoplasias Pancreáticas , Receptores de Quimiocina , Humanos , Receptores de Quimiocina/metabolismo , Ligandos , Proteínas Proto-Oncogénicas c-akt , Quimiocinas/metabolismo , Neoplasias Pancreáticas/terapia , Carcinogénesis , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA