RESUMEN
RATIONALE AND OBJECTIVES: Histological subtypes of lung cancers are critical for clinical treatment decision. The aim of this study is to compare the diagnostic performance of multiple radiomics models in differentiating PGL and MIA in pulmonary GGN, in order to identify the most optimal diagnostic model. MATERIALS AND METHODS: Patients presenting with GGNs on lung CT, confirmed as PGL or MIA through surgical pathology between October 2015 and June 2023, were included. The GGNs were randomly divided into training and validation sets at a 7:3 ratio. Clinical imaging characteristics were analyzed by univariate and multivariate logistic regression to identify independent risk factors for predicting MIA, leading to the development of a clinical model. ITK-SNAP and Pyradiomics were employed for segmentation and radiomics feature extraction. Subsequently, radiomics and combined models were established. The diagnostic performance of the three models was compared using ROC curves and quantitatively assessed by AUC, accuracy, specificity, and sensitivity. RESULTS: A total of 116 cases of GGNs with pathologically confirmed PGLs and MIAs were included. The clinical model identified three independent predictors. The radiomics model identified seven distinct radiomic features. A combined model was constructed by integrating clinical imaging features with radiomic features. In the training set, the combined model demonstrated a higher AUC than the radiomics model, with AUCs of 0.87 and 0.85 respectively. In the validation set, the radiomics model outperformed the combined model with an AUC of 0.83 versus 0.82. Notably, the radiomics model achieved the highest accuracy and specificity, while the combined model demonstrated the highest sensitivity. However, both models performed significantly better than the clinical model. CONCLUSION: The independent radiomics model can serve as a rapid, non-invasive diagnostic tool for differentiating between the PGL and MIA.
RESUMEN
BACKGROUND Heart failure and end-stage renal disease often coexist, and management of heart failure can be challenging in patients during hemodialysis. Sacubitril-valsartan (SV) is the first drug to receive regulatory approval for use in patients with chronic heart failure with reduced ejection fraction (HFrEF) and New York Heart Association (NYHA) classification II, III, or IV. This study aimed to evaluate the efficacy and safety of SV for use in chronic heart failure patients on maintenance hemodialysis (MHD). MATERIAL AND METHODS From September 2021 to October 2022, 28 patients on MHD with chronic heart failure at the hemodialysis center of Shaanxi Second Provincial People's Hospital were regularly followed. During the 12-week follow-up period, all patients were administered SV at doses of 100-400 mg per day. Biochemical indicators, echocardiographic parameters, life quality scores, and adverse events were evaluated. RESULTS We enrolled 28 patients. Compared with the baseline levels, NYHA class III in these patients treated with SV was significantly decreased from 60.71% to 32.14% (P<0.05), left ventricular ejection fraction (LVEF) was significantly improved from 44.29±8.92% to 53.32±7.88% (P<0.001), the Physical Component Summary (PCS) score was significantly improved from 40.0±6.41 to 56.20±9.86 (P<0.001), and the Mental Component Summary (MCS) score was significantly improved from 39.99±6.14 to 52.59±11.0 (P<0.001). CONCLUSIONS We demonstrated that SV improved NYHA classification and LVEF values of patients on MHD with chronic heart failure and also improved their quality of life.
Asunto(s)
Aminobutiratos , Compuestos de Bifenilo , Combinación de Medicamentos , Insuficiencia Cardíaca , Diálisis Renal , Valsartán , Humanos , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/fisiopatología , Valsartán/uso terapéutico , Masculino , Femenino , Aminobutiratos/uso terapéutico , Aminobutiratos/farmacología , Aminobutiratos/efectos adversos , Compuestos de Bifenilo/uso terapéutico , Persona de Mediana Edad , Diálisis Renal/métodos , Estudios Retrospectivos , Anciano , Fallo Renal Crónico/terapia , Fallo Renal Crónico/complicaciones , Fallo Renal Crónico/fisiopatología , Antagonistas de Receptores de Angiotensina/uso terapéutico , Antagonistas de Receptores de Angiotensina/farmacología , Antagonistas de Receptores de Angiotensina/efectos adversos , Resultado del Tratamiento , Calidad de Vida , Volumen Sistólico/efectos de los fármacos , Volumen Sistólico/fisiología , Tetrazoles/uso terapéutico , Tetrazoles/efectos adversos , Tetrazoles/farmacología , Enfermedad CrónicaRESUMEN
BACKGROUND: This study was designed to explore whether hsa_circ_0070440 was dysregulated in prostate cancer (PCa), and assess the effects of hsa_circ_0070440 alteration on PCa prognosis and cell function. METHODS: The expression levels of hsa_circ_0070440 were assessed in PCa tissues and cell lines. After the classification of patients with PCa based on mean hsa_circ_0070440 level in 138 cases, Chi-square test and survival analyses (Kaplan-Meier method and multivariable Cox proportional hazards analysis) were performed to assess the predictive value of hsa_circ_0070440 in treatment failure (TTF), time to PSA progression (TTPP) and overall survival time. To examine the function of hsa_circ_0070440 in PCa cells, 22Rv1 and C4-2B cells were used for CCK-8 proliferation and Transwell migration assays. Hsa_circ_0070440- and TXNDC5-specific bindings with miR-382/383-5p were validated by bioinformatic analysis and luciferase gene reporter assay. RESULTS: An increased expression of hsa_circ_0070440 was found in PCA tissues and cell lines, associated with clinical T stage (p=0.021) and lymph node metastasis. Hsa_circ_0070440 predicted poor overall survival, TTPP, and TTF, acting as independent prognostic factors for overall survival, TTPP, and TTF in patients with PCa. Knockdown of hsa_circ_0070440 inhibited cell proliferation and migration in vitro. Furthermore, hsa_circ_0070440 could sponge miR-382/383-5p. TXNDC5 was a common target gene for miR-382/383-5p in PCa cells. CONCLUSION: This study demonstrated that hsa_circ_0070440 can predict the prognosis of PCa patients. Hsa_circ_0070440 can facilitate the proliferation and migration of PCa cells, possibly by sponging miR-382/383-5p.
RESUMEN
Objective: To investigate the molecular mechanism of sevoflurane affecting the development of the offspring's nervous system through the GABAAR/Sirt 1 pathway. Methods: Pregnant rats were obtained by mating females and males, and were randomly divided into 3 h sevoflurane (2.3% sevoflurane anesthesia for 3 h), 6 h sevoflurane (2.3% sevoflurane anesthesia for 6 h), Sirt-1 activator-SRT1720 (10 mg/kg SRT1720), 6 h sevoflurane+SRT1720 (10 mg/kg SRT1720) and control groups) group and control group, 31-day-old littermates were taken out and their learning and memory functions were examined by the water maze experiment; the heads were severed to remove the brains, and the kits were used to detect the levels of 5-HT and Ach in the brain tissue; the hippocampal tissues of the littermates were isolated, and neuronal damage in the hippocampal tissues was assessed by Nissen staining; neuronal apoptosis in the hippocampal tissues was detected by TUNEL staining; and GABAAR in the hippocampal tissues was detected by Western blot. GABAAR, Sirt-1, and apoptosis-related proteins (Caspase-3, BCL-2, BAX) in hippocampal tissue. Results: Compared with the control group, the 3 h sevoflurane group and the 6 h sevoflurane group neurons were arranged sparsely, the cells appeared to be swollen, the evasion latency, the apoptosis rate of neurons, the expression of Caspase-3, and BAX increased significantly, and the number of crossing the plateau, the level of 5-HT and Ach in the brain tissues, and the expression of GABAAR, Sirt-1, and BCL-2 were decreased significantly, and the differences existed between the groups (P < .5); compared with the 6 h sevoflurane group, neuronal morphological changes in the hippocampal tissue of the 6 h sevoflurane+SRT1720 group were improved, with a significant decrease in the evasion latency, neuronal apoptosis rate, expression of Caspase-3 and BAX, and a significant increase in the number of traversing platforms, brain tissue 5-HT, Ach level, GABAAR, Sirt-1, and BCL-2 expression (P < .5); compared with the SRT1720 group, the neurons in the 6 h sevoflurane + SRT1720 group were sparsely arranged, with a significant increase in evasion latency, neuronal apoptosis rate, caspase-3, BAX expression, and a significant decrease in the number of traversing platforms, brain tissue 5-HT, Ach level, GABAAR, Sirt-1, and BCL-2 expression (P < .5 ). Conclusion: Sevoflurane can affect the neurological development of rat offspring, which may be related to the inhibition of Sirt-1 expression.
Asunto(s)
Sevoflurano , Sirtuina 1 , Sevoflurano/farmacología , Animales , Sirtuina 1/metabolismo , Ratas , Femenino , Embarazo , Anestésicos por Inhalación/farmacología , Receptores de GABA-A/metabolismo , Receptores de GABA-A/efectos de los fármacos , Masculino , Ratas Sprague-Dawley , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Apoptosis/efectos de los fármacos , Transducción de Señal/efectos de los fármacosRESUMEN
BACKGROUND: Peritoneal fibrosis is the prevailing complication induced by prolonged exposure to high glucose in patients undergoing peritoneal dialysis. METHODS: To elucidate the molecular mechanisms underlying this process, we conducted an integrated analysis of the transcriptome and chromatin accessibility profiles of human peritoneal mesothelial cells (HMrSV5) during high-glucose treatment. RESULTS: Our study identified 2775 differentially expressed genes (DEGs) related to high glucose-triggered pathological changes, including 1164 upregulated and 1611 downregulated genes. Genome-wide DEGs and network analysis revealed enrichment in the epithelial-mesenchymal transition (EMT), inflammatory response, hypoxia, and TGF-beta pathways. The enriched genes included VEGFA, HIF-1α, TGF-ß1, EGF, TWIST2, and SNAI2. Using ATAC-seq, we identified 942 hyper (higher ATAC-seq signal in high glucose-treated HMrSV5 cells than in control cells) and 714 hypo (lower ATAC-seq signal in high glucose-treated HMrSV5 cells versus control cells) peaks with differential accessibility in high glucose-treated HMrSV5 cells versus controls. These differentially accessible regions were positively correlated (R = 0.934) with the nearest DEGs. These genes were associated with 566 up- and 398 downregulated genes, including SNAI2, TGF-ß1, HIF-1α, FGF2, VEGFA, and VEGFC, which are involved in critical pathways identified by transcriptome analysis. Integrated ATAC-seq and RNA-seq analysis also revealed key transcription factors (TFs), such as HIF-1α, ARNTL, ELF1, SMAD3 and XBP1. Importantly, we demonstrated that HIF-1α is involved in the regulation of several key genes associated with EMT and the TGF-beta pathway. Notably, we predicted and experimentally validated that HIF-1α can exacerbate the expression of TGF-ß1 in a high glucose-dependent manner, revealing a novel role of HIF-1α in high glucose-induced pathological changes in human peritoneal mesothelial cells (HPMCs). CONCLUSIONS: In summary, our study provides a comprehensive view of the role of transcriptome deregulation and chromosome accessibility alterations in high glucose-induced pathological fibrotic changes in HPMCs. This analysis identified hub genes, signaling pathways, and key transcription factors involved in peritoneal fibrosis and highlighted the novel glucose-dependent regulation of TGF-ß1 by HIF-1α. This integrated approach has offered a deeper understanding of the pathogenesis of peritoneal fibrosis and has indicated potential therapeutic targets for intervention.
Asunto(s)
Cromatina , Fibrosis Peritoneal , Humanos , Cromatina/genética , Factor de Crecimiento Transformador beta1/genética , Transcriptoma/genética , Aberraciones Cromosómicas , Factor de Crecimiento Transformador betaRESUMEN
This study examined forty skull samples of ancient children, aged 2-15 years, excavated from the Zaghunluq cemetery in Xinjiang, China. The purpose of the study was to analyze the patterns of age-related physiological development and growth spurts in the skulls of these ancient children by comparing the projected areas of the bottom view of the skull, the occipital bone, and the maxilla among different age groups. The analysis of variance (ANOVA) revealed significant differences in the projected areas of the skull's bottom view, occipital bone, and maxilla among five age groups (2 years old, 3-5 years old, 6-8 years old, 9-11 years old, and 12-15 years old). The growth spurts in the projected area of the occipital bone occurred at ages 3-5 years and 6-8 years. As for the maxilla, the growth spurts took place at ages 6-8 years and 12-15 years. Meanwhile, the projected area of the skull's bottom view exhibited a continuous increase without any periods of rapid growth. These findings may reflect the patterns of age-related growth in the skulls of ancient children in Xinjiang, China.
Asunto(s)
Cementerios , Cráneo , Niño , Humanos , Preescolar , Cráneo/anatomía & histología , Cabeza , ChinaRESUMEN
LncRNAs are abnormally expressed in a variety of cancers and play unique roles in therapy. Based on this, the prognostic value of lncRNA LINC01018 in prostate cancer was discussed in this study. LINC01018 was underexpressed in prostate cancer tissues and cells, while miR-182-5p was elevated (***p < 0.001). Overexpression of LINC01018 may inhibit the progression of prostate cancer by targeting miR-182-5p. This study revealed that upregulated LINC01018 may prolong the overall survival of patients with prostate cancer (log-rank p = 0.042), and LINC01018 may become a prognostic biomarker for patients with prostate cancer, which brings a new direction for the treatment of patients.
RESUMEN
Early childhood is an important period for the rapid growth of the brain, which is crucial to neural connection and cognitive development. The purpose of this study is to characterize the age changes of endocasts in ancient children in Northwestern China (2600-2100 BP) to enrich our understanding of brain growth. 28 crania of ancient children excavated from the Zaghunluq cemetery were analyzed using endocasts generated from CT images. The endocast features of age-related changes were assessed by comparing the endocranial volume (cranial capacity), the intracranial surface area, and their ratios among different age groups: 2, 3-5, 6-7, 8-10, 12-15, and 17-19 years. The results demonstrated that with the increase of age, the volume and the surface area of children's endocasts seem to increase between age groups. The growth spurt periods of endocranial volume are 3-5 years old and 8-10 years old, and the growth spurt period of endocranial surface area is 3-5 years old, similar to the patterns in modern children. The increase of endocast surface area is smaller than that of volume, resulting in an overall increase in the ratio of endocranial volume to surface area, indicating a trend of gradual globularization of the brain.
RESUMEN
Both environmental and genetic factors contribute to the etiology of autoimmune thyroid disease (AITD) including Graves' disease (GD) and Hashimoto's thyroiditis (HT). However, the exact pathogenesis and interactions that occur between environmental factors and genes remain unclear, and therapeutic targets require further investigation due to limited therapeutic options. To solve such problems, this study utilized single-cell transcriptome, whole transcriptome, full-length transcriptome (Oxford nanopore technology), and metabolome sequencing to examine thyroid lesion tissues from 2 HT patients and 2 GD patients as well as healthy thyroid tissue from 1 control subject. HT patients had increased ATF4-positive thyroid follicular epithelial (ThyFoEp) cells, which significantly increased endoplasmic reticulum stress. The enhanced sustained stress resulted in cell death mainly including apoptosis and necroptosis. The ATF4-based global gene regulatory network and experimental validation revealed that N6-methyladenosine (m6A) reader hnRNPC promoted the transcriptional activity, synthesis, and translation of ATF4 through mediating m6A modification of ATF4. Increased ATF4 expression initiated endoplasmic reticulum stress signaling, which when sustained, caused apoptosis and necroptosis in ThyFoEp cells, and mediated HT development. Targeting hnRNPC and ATF4 notably decreased ThyFoEp cell death, thus ameliorating disease progression. Collectively, this study reveals the mechanisms by which microenvironmental cells in HT and GD patients trigger and amplify the thyroid autoimmune cascade response. Furthermore, we identify new therapeutic targets for the treatment of autoimmune thyroid disease, hoping to provide a potential way for targeted therapy.
RESUMEN
INTRODUCTION: The aim of the study was to systematically evaluate the efficacy and safety of plasma exchange combined with hemoperfusion in the treatment of organophosphorus poisoning. METHODS: PubMed, Embase, the Cochrane Library, China National Knowledge Internet, Wanfang database, and Weipu database were searched for articles about this subject. Literature screening and selection were conducted in strict accordance with the inclusion and exclusion criteria. RESULTS: 14 randomized controlled trials with 1,034 participants were included in this meta-analysis study, including 518 cases in plasma exchange combined with hemoperfusion group (the combination treatment group) and 516 cases in hemoperfusion group (the control group). Compared with the control group, the combination treatment group was associated with a higher effective rate (relative risk [RR] = 1.20, 95% confidence interval [CI] [1.11, 1.30], p < 0.00001) and lower fatality rate (RR = 0.28, 95% CI [0.15, 0.52], p< 0.0001); reduced TNF-α (standardized mean difference [SMD] = -1.95, 95% CI [-2.42, -1.48], p < 0.00001), IL-6 (SMD = -1.94, 95% CI [-3.08, -0.80], p = 0.0009), and C-reactive protein (CRP) (SMD = -1.94, 95% CI [-2.86, -1.03], p < 0.0001); shorten coma time (SMD = -1.99, 95% CI [-2.75, -1.24], p < 0.00001), recovery time of cholinesterase activity (SMD = -1.71, 95% CI [-1.90, -1.53], p < 0.00001), and hospital stay (SMD = -1.29, 95% CI [-1.59, -0.98], p < 0.00001). The incidence of complications in the combination treatment group such as liver and kidney damage (RR = 0.30, 95% CI [0.18, 0.50], p < 0.00001), pulmonary infection (RR = 0.29, 95% CI [0.18, 0.47], p < 0.00001), and intermediate syndrome (RR = 0.32, 95% CI [0.21, 0.49], p < 0.00001) was lower than that in the control group. CONCLUSIONS: The current evidence suggests that the combination of plasma exchange with hemoperfusion therapy can reduce the mortality of patients with organophosphorus poisoning, shorten the recovery time of cholinesterase activity and the time of coma, reduce the average length of hospital stay, and reduce the levels of IL-6, TNF-α, and CRP, but high-quality randomized double-blind controlled trials are still required to confirm the current findings in the future.
Asunto(s)
Hemoperfusión , Intoxicación por Organofosfatos , Humanos , Intoxicación por Organofosfatos/terapia , Intercambio Plasmático , Factor de Necrosis Tumoral alfa , Coma , Interleucina-6 , Colinesterasas , Ensayos Clínicos Controlados Aleatorios como AsuntoRESUMEN
BACKGROUND: Lung adenocarcinoma (LUAD) is a common type of lung cancer with a high risk of metastasis, but the exact molecular mechanisms of metastasis are not yet understood. METHODS: This study acquired single-cell transcriptomics profiling of 11 distal normal lung tissues, 11 primary LUAD tissues, and 4 metastatic LUAD tissues from the GSE131907 dataset. The lung multicellular ecosystems were characterized at a single-cell resolution, and the potential mechanisms underlying angiogenesis and metastasis of LUAD were explored. RESULTS: We constructed a global single-cell landscape of 93,610 cells from primary and metastatic LUAD and found that IGF2BP2 was specifically expressed both in a LUAD cell subpopulation (termed as LUAD_IGF2BP2), and an endothelial cell subpopulation (termed as En_IGF2BP2). The LUAD_IGF2BP2 subpopulation progressively formed and dominated the ecology of metastatic LUAD during metastatic evolution. IGF2BP2 was preferentially secreted by exosomes in the LUAD_IGF2BP2 subpopulation, which was absorbed by the En_IGF2BP2 subpopulation in the tumor microenvironment. Subsequently, IGF2BP2 improved the RNA stability of FLT4 through m6A modification, thereby activating the PI3K-Akt signaling pathway, and eventually promoting angiogenesis and metastasis. Analysis of clinical data showed that IGF2BP2 was linked with poor overall survival and relapse-free survival for LUAD patients. CONCLUSIONS: Overall, these findings provide a novel insight into the multicellular ecosystems of primary and metastatic LUAD, and demonstrate that a specific LUAD_IGF2BP2 subpopulation is a key orchestrator promoting angiogenesis and metastasis, with implications for the gene regulatory mechanisms of LUAD metastatic evolution, representing themselves as potential antiangiogenic targets.
Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Humanos , Metilación , Ecosistema , Células Endoteliales , Fosfatidilinositol 3-Quinasas , Recurrencia Local de Neoplasia , Adenocarcinoma del Pulmón/genética , Neoplasias Pulmonares/genética , Microambiente Tumoral , Proteínas de Unión al ARN/genéticaRESUMEN
BACKGROUND: Some bladder-related diseases, such as bladder urinary tract infection (UTI) and bladder cancer (BCa), have significant six differences in incidence and prognosis. However, the molecular mechanisms underlying these sex differences are still not fully understood. Understanding the sex-biased differences in gene expression in normal bladder cells can help resolve these problems. METHODS: We first collected published single-cell RNA sequencing (scRNA-seq) data of normal human bladders from females and males to map the bladder transcriptomic landscape. Then, Gene Ontology (GO) analysis and gene set enrichment analysis (GSEA) were used to determine the significant pathways that changed in the specific cell populations. The Monocle2 package was performed to reconstruct the differentiation trajectories of fibroblasts. In addition, the scMetabolism package was used to analyze the metabolic activity at the single-cell level, and the SCENIC package was used to analyze the regulatory network. RESULTS: In total, 27,437 cells passed stringent quality control, and eight main cell types in human bladder were identified according to classical markers. Sex-based differential gene expression profiles were mainly observed in human bladder urothelial cells, fibroblasts, B cells, and T cells. We found that urothelial cells in males demonstrated a higher growth rate. Moreover, female fibroblasts produced more extracellular matrix, including seven collagen genes that may mediate BCa progression. Furthermore, the results showed that B cells in female bladders exhibited more B-cell activated signals and a higher expression of immunoglobulin genes. We also found that T cells in female bladders exhibited more T-cell activated signals. These different biological functions and properties of these cell populations may correlate with sex differences in UTI and BCa, and result in different disease processes and outcomes. CONCLUSIONS: Our study provides reasonable insights for further studies of sex-based physiological and pathological disparities in the human bladder, which will contribute to the understanding of epidemiological differences in UTI and BCa.
Asunto(s)
Neoplasias de la Vejiga Urinaria , Vejiga Urinaria , Infecciones Urinarias , Humanos , Estudios Prospectivos , Vejiga Urinaria/metabolismo , Neoplasias de la Vejiga Urinaria/genética , Infecciones Urinarias/genética , Análisis de la Célula Individual , Regulación de la Expresión Génica , Análisis de Secuencia de ARNRESUMEN
OBJECTIVE: To assess the dietary quality of patients with severe cerebrovascular disease using Diet Balance Index-16 (DBI-16) and to provide scientific evidence for the establishment of targeted dietary intervention and related dietary nutritional education for patients. METHODS: The general information of 214 hospitalized patients with severe cerebrovascular disease, including gender and age etc., were investigated by a self-made questionnaire on health risk factors, and the dietary quality conditions of patients was evaluated by DBI-16 scoring method. RESULTS: The dietary quality of patients with severe cerebrovascular disease had low levels of imbalanced conditions, accompanied with low levels of inadequate intake and excessive intake. The degree of excessive intake in female patients was clearly less than that in male patients. The degree of inadequate intake and total scores in patients younger than 55 years old was lower than those in the other two groups. The intake of vegetables, fruits, milk and soybeans in most of patients did not reach the recommended nutrient intake and the animal product amount was insufficient. In addition, the intake of low quality food and condiments such as oil and salt were excessive in patients with severe cerebrovascular disease. Dietary pattern A was the main model. CONCLUSIONS: The overall diet structure of patients with severe cerebrovascular disease is not rational. It is recommended to appropriately balance the intake of grains and animal products, increase the intake of milk, soybeans, vegetables and fruits, and strictly control the amount of oil and salt.
RESUMEN
Skin aging is a complicated physiological process, and microRNA-mediated regulation has been shown to contribute to this process. Exosomes mediate intercellular communication through miRNAs, mRNAs and proteins, and participate in many physiological and pathological processes. Vascular endothelial cell-derived exosomes have been confirmed to be involved in the development of many diseases, however, their effects on skin aging have not been reported. In this study, senescent endothelial cells could regulate skin fibroblast functions and promote cell senescence through exosomal pathway. miR-767 was highly expressed in senescent vascular endothelial cells and their exosomes, and miR-767 is also upregulated in skin fibroblasts after treatment with exosomes derived from senescent vascular endothelial cells. In addition, transfection with miR-767 mimic promoted senescence of skin fibroblasts, while transfection with miR-767 inhibitor reversed the effect of D-galactose. Double luciferase analysis confirmed that TAB1 was a direct target gene of miR-767. Furthermore, miR-767 expression was increased and TAB1 expression was decreased in D-galactose induced aging mice. In mice that overexpressed miR-767, HE staining showed thinning of dermis and senescence appearance. In conclusion, senescent vascular endothelial cell-derived exosome mediated miR-767 regulates skin fibroblasts through the exosome pathway. Our study reveals the role of vascular endothelial cell-derived exosomes in aging in the skin microenvironment and contributes to the discovery of new targets for delaying senescence.
Asunto(s)
Exosomas , MicroARNs , Animales , Ratones , Células Endoteliales/metabolismo , Galactosa/metabolismo , Envejecimiento/genética , MicroARNs/metabolismo , Fibroblastos/metabolismo , Exosomas/metabolismoRESUMEN
Delayed closure of the anterior fontanelle is often associated with various disorders. However, the phenomenon might be a normal variation. In this study, the anterior fontanelle was investigated in children from the Iron Age Zaghunluq cemetery in Xinjiang, northwestern China. Age at death was estimated by tooth development/eruption in the children. The anterior fontanelle was visually assessed for delayed fusion. Three out of nine children aged between 3-6 years old from the cemetery had signs of open anterior fontanelle. However, there were no signs of craniofacial pathology or developmental disruption. Delayed closure of the anterior fontanelle might have been a norm in the Iron Age Zaghunluq population. However, it is impossible to determine the reasons behind the high prevalence of delayed AF closure at Zaghunluq. Additional studies are warranted to determine whether this phenomenon is population specific, or diet specific, or just an individual variation.
Asunto(s)
Fontanelas Craneales , Humanos , Niño , Preescolar , China/epidemiologíaAsunto(s)
Osteoartritis , Humanos , Osteoartritis/diagnóstico por imagen , Osteoartritis/cirugía , Mano , Pie , Extremidad Superior , Extremidad InferiorRESUMEN
Background: The Cox regression model is not sufficiently accurate to predict the survival prognosis of nasopharyngeal carcinoma (NPC) patients. It is impossible to calculate and rank the importance of impact factors due to the low predictive accuracy of the Cox regression model. So, we developed a system. Using the SEER (The Surveillance, Epidemiology, and End Results) database data on NPC patients, we proposed the use of random survival forest (RSF) and survival-support vector machine (SVM) from the machine learning methods to develop a survival prediction system specifically for NPC patients. This approach aimed to make up for the insufficiency of the Cox regression model. We also used the Cox regression model to validate the development of the nomogram and compared it with machine learning methods. Methods: A total of 1,683 NPC patients were extracted from the SEER database from January 2010 to December 2015. We used R language for modeling work, established the nomogram of survival prognosis of NPC patients by Cox regression model, ranked the correlation of influencing factors by RSF model VIMP (variable important) method, developed a survival prognosis system for NPC patients based on survival-SVM, and used C-index for model evaluation and performance comparison. Results: Although the Cox regression models can be developed to predict the prognosis of NPC patients, their accuracy was lower than that of machine learning methods. When we substituted the data for the Cox model, the C-index for the training set was only 0.740, and the C-index for the test set was 0.721. In contrast, the C index of the survival-SVM model was 0.785. The C-index of the RSF model was 0.729. The importance ranking of each variable could be obtained according to the VIMP method. Conclusions: The prediction results from the Cox model are not as good as those of the RSF method and survival-SVM based on the machine learning method. For the survival prognosis of NPC patients, the machine learning method can be considered for clinical application.
RESUMEN
Ionizing radiation (IR) has been widely used in the diagnosis and treatment of clinical diseases, with radiation therapy (RT) being particularly rapid, but it can induce "bystander effects" that lead to biological responses in non-target cells after their neighboring cells have been irradiated. To help clarify how radiotherapy induces these effects, To help clarify how radiotherapy induces these effects, we analyzed single-cell RNA sequencing data from irradiated intestinal tissues on day 1 (T1 state), day 3 (T3 state), day 7 (T7 state), and day 14 (T14 state) after irradiation, as well as from healthy intestinal tissues (T0 state), to reveal the cellular level, molecular level, and involvement of different time irradiated mouse intestinal tissues in biological signaling pathways. In addition, changes in immune cell subpopulations and myeloid cell subpopulations after different radiation times were further explored, and gene regulatory networks (GRNs) of these cell subpopulations were constructed. Cellular communication between radiation-specific immune cells was explored by cell-to-cell communication events. The results suggest that radiotherapy trigger changes in immune cell subsets, which then reprogram the immune ecosystem and mediate systemic bystander effects. These radiation-specific immune cells participate in a wide range of cell-to-cell communication events. In particular, radiation-specific CD8+T cells appear to be at the core of communication and appear to persist in the body after recovery from radiotherapy, with enrichment analysis showing that radiation-specific CD8+ T cells are associated with ferroptosis. Thus, radiation-specific CD8+ T cells may be involved in cellular ferroptosis-mediated adverse effects caused by RT.
Asunto(s)
Efecto Espectador , Traumatismos por Radiación , Animales , Ratones , Efecto Espectador/efectos de la radiación , Radiación Ionizante , Transducción de Señal/efectos de la radiaciónRESUMEN
BACKGROUND: Multiple myeloma (MM) is a heterogeneous disease with different patterns of clonal evolution and a complex tumor microenvironment, representing a challenge for clinicians and pathologists to understand and dissect the contribution and impact of polyclonality on tumor progression. METHODS: In this study, we established a global cell ecological landscape of the bone marrow (BM) from MM patients, combining single-cell RNA sequencing and single-molecule long-read genome sequencing data. RESULTS: The malignant mutation event was localized to the tumor cell clusters with shared mutation of ANK1 and IFITM2 in all malignant subpopulations of all MM patients. Therefore, these two variants occur in the early stage of malignant clonal origin to mediate the malignant transformation of proplasmacytes or plasmacytes to MM cells. Tumor cell stemness index score and pseudo-sequential clonal evolution analysis can be used to divide the evolution model of MM into two clonal origins: types I and IX. Notably, clonal evolution and the tumor microenvironment showed an interactive relationship, in which the evolution process is not only selected by but also reacts to the microenvironment; thus, vesicle secretion enriches immune cells with malignant-labeled mRNA for depletion. Interestingly, microenvironmental modification exhibited significant heterogeneity among patients. CONCLUSIONS: This characterization of the malignant clonal evolution pattern of MM at the single-cell level provides a theoretical basis and scientific evidence for a personalized precision therapy strategy and further development of a potential new adjuvant strategy combining epigenetic agent and immune checkpoint blockade.
Asunto(s)
Mieloma Múltiple , Médula Ósea/patología , Evolución Clonal/genética , Humanos , Inhibidores de Puntos de Control Inmunológico , Proteínas de la Membrana/genética , Mieloma Múltiple/patología , ARN Mensajero , Microambiente Tumoral/genéticaRESUMEN
OBJECTIVE: To explore the association between phenotype and the gut microbiome following damage to the GRID2 gene. METHODS: Ten wild-type (WT) mice and 11 GRID2 knockout heterozygous mice (GRID2(±)) of a similar age and weight were randomly selected. Fresh feces were collected from both groups of mice under specified pathogen-free (SPF) conditions. The bacterial genomes were extracted from the feces, the 16S rRNA genes were sequenced, and the data were analyzed to determine clustering, diversity, abundance, LEfSe, and functional differences. Differential expression and enrichment analyses of the RNA-seq and protein levels of the GRID2 gene were also performed using data in the GENE database and the new version of the Human Protein Atlas portal (www.proteinatlas.org). RESULTS: The diversity analysis showed differences in species composition between the two groups at different levels. At phylum level, compared with the WT group, the distribution was more bacteriophages but showed a lower content of Tenericutes in the GRID2(±) group. At the order level, compared with the WT group, a higher content of Actinomycetales and Bacteriophages were found in the GRID2(±) group. The species difference analysis showed that 17 species, including E. faecalis and Paracoccus spp., showed differences in content between the two groups. LEfSe analysis showed that the abundance of Clostridiaceae, Allobaculum, and other groups decreased in the GRID2(±) group compared with the WT group, while Mycoplasma, Sphingomonas, and Alphaproteobacteria increased in abundance. Functional analysis revealed eight differential functions between the WT and GRID2(±) group (P < 0.05). The most significantly disrupted were neuroactive ligand-receptor interactions (P < 9.99e-4). In addition, the differential expression and enrichment analyses performed at RNA-seq and protein levels revealed that the GRID2 gene showed organ-specific expression and was mainly enriched in the brain tissue. CONCLUSIONS: Compared with the WT group, the defective GRID2 gene affected the species richness and composition of gut microbes in the GRID2(±) mice, which in turn affected the function of gut microbes, leading to the disruption of neuroactive ligand-receptor interactions. Our findings indicate that the host gene, GRID2, can influence the abundance of a subset of gut microbes but the exact mechanisms still need further investigation.