Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38829566

RESUMEN

Salmonella typhimurium (S. typhimurium) constitutes a major public health concern. We have previously proven that Lactobacillus crispatus 7-4 (L. crispatus 7-4) can inhibit the growth of S. typhimurium and thus can be used as a biocontrol strategy to suppress foodborne S. typhimurium infections. However, the inhibitory effect and in-depth mechanism of L. crispatus 7-4 remain to be elucidated. In this study, we found that L. crispatus 7-4 can protect against S. typhimurium-induced ileum injury by promoting intestinal barrier integrity, maintaining intestinal mucosal barrier homeostasis, and reducing intestinal inflammatory response. Furthermore, we demonstrated that this probiotic strain can increase the abundance of Lactobacillus spp. to maintain microbial homeostasis and simultaneously increase the amount of γ­glutamylcysteine (γ-GC) by activating the glutathione metabolic pathway. The increased γ-GC promoted the transcription of Nrf2 target genes, thereby improving the host antioxidant level, reducing reactive oxygen species (ROS) accumulation, and removing pro-inflammatory cytokines. In other words, L. crispatus 7-4 could activate the enterocyte Nrf2 pathway by improving γ-GC to protect against S. typhimurium-induced intestinal inflammation and oxidative damage.

2.
Environ Pollut ; 349: 123939, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38593938

RESUMEN

Bisphenol S (BPS) is an emerging environmental endocrine disruptor capable of crossing the placental barrier, resulting in widespread exposure to pregnant women due to its extensive usage. However, the impact of perinatal maternal exposure to BPS on reproductive health in offspring and the underlying molecular mechanism remain underexplored. In this study, gestational ICR mice were provided with drinking water containing 3.33 mg/L BPS to mimic possible human exposure in some countries. Results demonstrated that BPS accelerated the breakdown of germ-cell cysts and the assembly of primordial follicles in neonates, leading to oocyte over-loss. Furthermore, the expression levels of folliculogenesis-related genes (Kit, Nobox, Gdf9, Sohlh2, Kitl, Bmp15, Lhx8, Figla, and Tgfb1) decreased, thus compromising oocyte quality and disrupting early folliculogenesis dynamics. BPS also disrupted other aspects of offspring reproduction, including advancing puberty onset, disrupting the estrus cycle, and impairing fertility. Further investigation found that BPS exposure inhibited the activities and expression levels of antioxidant-related enzymes in neonatal ovaries, leading to the substantial accumulation of MDA and ROS. The increased oxidative burden exacerbated the intracellular apoptotic signaling, manifested by increased expression levels of pro-apoptotic markers (Bax, Caspase 3, and Caspase 9) and decreased expression levels of anti-apoptotic marker (Bcl2). Concurrently, BPS inhibited autophagy by increasing p-mTOR/mTOR and decreasing p-ULK1/ULK1, subsequently down-regulating autophagy flux-related biomarkers (LC3b/LC3a and Beclin-1) and impeding the degradation of autophagy substrate p62. However, the imbalanced crosstalk between autophagy, apoptosis and oxidative stress homeostasis was restored after rapamycin treatment. Collectively, the findings demonstrated that BPS exposure induced reproductive disorders in offspring by perturbing the mTOR/autophagy axis, and such autophagic dysfunction exacerbated redox imbalance and promoted excessive apoptosis. These results provide novel mechanistic insights into the role of autophagy in mitigating BPS-induced intergenerational reproductive dysfunction.


Asunto(s)
Apoptosis , Autofagia , Ratones Endogámicos ICR , Ovario , Estrés Oxidativo , Fenoles , Sulfonas , Serina-Treonina Quinasas TOR , Animales , Femenino , Fenoles/toxicidad , Autofagia/efectos de los fármacos , Apoptosis/efectos de los fármacos , Ratones , Ovario/efectos de los fármacos , Ovario/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Embarazo , Estrés Oxidativo/efectos de los fármacos , Sulfonas/toxicidad , Disruptores Endocrinos/toxicidad , Efectos Tardíos de la Exposición Prenatal , Exposición Materna , Animales Recién Nacidos
3.
Sci Total Environ ; 929: 172388, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38614356

RESUMEN

The present study systematically assessed the presence and ecological risks of 79 pesticides in various aquaculture systems, namely pond aquaculture (PA), greenhouse aquaculture (GA), and raceway aquaculture (RA) at different aquaculture stages, along with evaluating the pesticide removal of four tailwater treatment systems. Sixteen herbicides and two fungicides were identified, with the total concentrations ranging from 8.33 ng/L to 3248.45 ng/L. The PA system demonstrated significantly higher concentrations (p < 0.05) and a wider range of pesticide residues compared to the GA and RA systems. Prometryn, simetryn, atrazine, and thifluzamide were found to be the predominant pesticides across all three aquaculture modes, suggesting their significance as pollutants that warrant monitoring. Additionally, the findings indicated that the early aquaculture stage exhibits the highest levels of pesticide concentration, underscoring the importance of heightened monitoring and regulatory interventions during this phase. Furthermore, among the four tailwater treatment systems analyzed, the recirculating tailwater treatment system exhibited the highest efficacy in pesticide removal. A comprehensive risk assessment revealed minimal ecological risks in both the aquaculture and tailwater environments. However, the pesticide mixtures present high risks to algae and low to medium risks to aquatic invertebrates and fish, particularly during the early stages of aquaculture. Simetryn and prometryn were identified as high-risk pesticides. Based on the prioritization index, simetryn, prometryn, diuron, and ametryn are recommended for prioritization in risk assessment. This study offers valuable data for pesticide control and serves as a reference for the establishment of a standardized pesticide monitoring and management system at various stages of aquaculture.


Asunto(s)
Acuicultura , Monitoreo del Ambiente , Residuos de Plaguicidas , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/análisis , Residuos de Plaguicidas/análisis , Medición de Riesgo , Animales , Herbicidas/análisis
4.
ACS Appl Mater Interfaces ; 16(15): 18591-18607, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38564431

RESUMEN

Coronavirus disease 2019 (COVID-19) has caused a global pandemic since its onset in 2019, and the development of effective vaccines for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to induce potent and long-lasting immunity remains a priority. Herein, we prepared two Lactobacillus exopolysaccharide (EPS) nanoparticle adjuvants (NPs 7-4 and NPs 8-2) that were constructed by using sulfation-modified EPS and quaternization-modified chitosan. These two NPs displayed a spherical morphology with sizes of 39 and 47 nm. Furthermore, the zeta potentials of NPs 7-4 and NPs 8-2 were 50.40 and 44.40 mV, respectively. In vitro assays demonstrated that NPs could effectively adsorb antigenic proteins and exhibited a sustained release effect. Mouse immunization tests showed that the NPs induced the expression of cytokines and chemokines at the injection site and promoted the uptake of antigenic proteins by macrophages. Mechanically, the NPs upregulated the expression of pattern recognition receptors (toll-like receptors and nod-like receptors) and activated the immune response of T cells and the production of neutralizing antibodies. In addition, the NP adjuvants had favorable immune-enhancing effects in cats, which are of great significance for controlling the trans-host transmission and re-endemicity of SARS-CoV-2. Overall, we demonstrated that NP-adjuvanted SARS-CoV-2 receptor binding domain proteins could induce robust specific humoral and cellular immunity.


Asunto(s)
COVID-19 , Nanopartículas , Animales , Ratones , Gatos , Vacunas contra la COVID-19 , SARS-CoV-2 , Sulfatos/farmacología , Adyuvantes Inmunológicos/química , Nanopartículas/química , Adyuvantes Farmacéuticos/farmacología , Inmunidad Celular , Vacunas de Subunidad/farmacología
5.
Vaccines (Basel) ; 12(3)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38543897

RESUMEN

Hepatitis-hydropericardium syndrome (HHS), caused by fowl adenovirus serotype 4 (FAdV-4), has been widely spread across China, resulting in great financial losses in the poultry industry. Therefore, efficient vaccines against this disease urgently need to be developed. In our study, the fiber-2 and penton base proteins derived from the FAdV-4 JS strain were expressed in a prokaryotic system (E. coli) in a soluble form. Then, the efficacy of the two recombinant proteins formulated with cheap and widely used adjuvants (Marcol™ 52 white oil) were respectively tested, and the minimum immune doses and safety of the above proteins were also determined. It was indicated that the fiber-2 (20 µg/bird, 200 µg/bird) and penton base (200 µg/bird) could provide complete protection against the highly pathogenic FAdV-4 and suppress its replication and shedding. Unfortunately, only the fiber-2 protein could induce complete protection (10/10) at a low dose (10 µg/bird). In addition, we confirmed that the fiber-2 subunit vaccine formulated with oil adjuvants was safe for vaccinated chickens. Conclusively, all of our results suggest that we successfully prepared an efficient and cheap fiber-2 subunit vaccine with few side effects.

6.
Probiotics Antimicrob Proteins ; 16(2): 623-635, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37043165

RESUMEN

Antibiotic-resistant bacteria are prevalent in husbandry around the world due to the abuse of antibiotic growth promoters (AGPs); therefore, it is necessary to find alternatives to AGPs in animal feed. Among all the candidates, probiotics are promising alternatives to AGPs against Salmonella infection. The anti-Salmonella effects of three probiotic strains, namely, Lactobacillus crispatus 7-4, Lactobacillus johnsonii 3-1, and Pediococcus acidilactici 20-1, have been demonstrated in our previous study. In this study, we further obtained the alginate beads containing compound probiotics, namely, microencapsulate probiotics (MP), and evaluated its regulatory effect on the health of broilers. We incubated free and microencapsulate probiotics in simulated gastric and intestinal juice for 2 h, and the results showed that compared to free probiotics, encapsulation increased tolerance of compound probiotics in the simulated gastrointestinal condition. We observed that the application of probiotics, especially MP, conferred protective effects against Salmonella typhimurium (S.Tm) infection in broilers. Compared to the S.Tm group, the MP could promote the growth performance (p < 0.05) and reduce the S.Tm load in intestine and liver (p < 0.05). In detail, MP pretreatment could modulate the cecal microflora and upregulate the relative abundance of Lactobacillus and Enterobacteriaceae. Besides, MP could reduce the inflammation injury of the intestine and liver, reduce the pro-inflammatory cytokines (IL-6, TNF-α, IL-1ß) expression, and induce of anti-inflammatory cytokine (IL-10) expression. Furthermore, MP could inhibit NLRP3 pathway in ileum, thereby attenuating S.Tm-induced inflammation. In conclusion, MP could be a new feeding supplementation strategy to substitute AGPs in poultry feeding.


Asunto(s)
Probióticos , Salmonelosis Animal , Animales , Salmonella typhimurium/fisiología , Pollos , Salmonelosis Animal/prevención & control , Salmonelosis Animal/microbiología , Probióticos/farmacología , Citocinas , Inflamación , Antibacterianos
7.
J Nutr Biochem ; 121: 109436, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37666477

RESUMEN

We have previously proven that the environmental toxin could accelerate the development and progression of nonalcoholic steatohepatitis (NASH). However, the underlying mechanism associated with such excessive inflammation hasn't been fully illustrated. Although Genistein has been well accepted for its capability in anti-inflammation and anti-oxidation, its effect in ameliorating contaminants-induced NASH still needs to be identified. In this study, using chickens and primary chicken hepatocytes as models, we found that NOD-like receptor pyrin domain-containing 3 (NLRP3) inflammasome were over-activated in bromoacetic acid (BAA, one of the typical environmental toxins)-induced NASH, characterized by the infiltration of inflammatory cell, and the increase of NLRP3, Caspase-1 p20, and cytokines (IL-1ß, IL-18) expressions. Interestingly, genistein treatment could recover these changes, with the signs of restored activities of anti-oxidases, decreased expressions of NLRP3 inflammasome components, and increased levels of elements in phase I metabolic system. The detailed mechanism was that, via up-regulating aryl hydrocarbon receptor (AHR), genistein lifted mRNA levels of Cyp1-related genes to reconstruct cytochrome P450 (CYP450) systems, and the raised AHR negatively regulated NLRP3 inflammasome activity to relieve inflammation. More important, the interaction and co-localization between AHR and NLRP3 was first proved, and genistein could promote the levels of AHR that interacted with NLRP3, which thereafter blocked the activation of NLRP3 inflammasome. Conclusively, in this research, we confirmed the AHR-dependent protective role of genistein in environmental toxin-linked NASH, which shed light on the potential precautions for contaminants-induced NASH.

8.
Front Vet Sci ; 10: 1214318, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37483299

RESUMEN

Canine distemper (CD) caused by canine distemper virus (CDV) is considered a highly contagious and acutely febrile disease in various animals around the world. Endoplasmic reticulum-associated protein degradation (ERAD) is an important biological effect induced by endoplasmic reticulum (ER) stress (ERS) for the degradation of unfolded/misfolded proteins in the ER of cells. CDV H glycoprotein is translocated into the ER for post-translational modifications. The effects of CDV H and ER on each other are unclear. In this study, we found that CDV H protein induced ERS through the PERK-mediated signaling pathway. The inhibition of ERS by 4-Phenylbutyric acid (4-PBA) increased the H protein amounts of an attenuated CDV, which was reduced by dithiothreitol (DTT)-induced ERS. Further, the H protein levels were increased when ERAD was inhibited by using Eeyarestatin I or interfering E3 ligase Hrd1 in ERAD, suggesting that the attenuated CDV H protein is degraded via ERAD. ERAD involved ubiquitin-dependent proteasome degradation (UPD) and/or autophagic-lysosome degradation (ALD). The attenuated CDV H protein was ubiquitinated and significantly increased after treatment with UPD inhibitor MG132 but not ALD inhibitor chloroquine (CQ), suggesting that ERAD degrading the attenuated CDV H protein selectively depends on UPD. Moreover, the inhibition of the degradation of CDV H protein with 4-PBA or MG132 treatment increased viral replication, whereas treatment with DTT promoting degradation of H protein was found to reduce viral replication. These findings suggest that the degradation of CDV H protein via ERAD negatively affects viral replication and provide a new idea for developing CDV prevention and control strategies.

9.
Environ Pollut ; 334: 122211, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37454720

RESUMEN

As a metabolic disruptor, bisphenol A (BPA) has been widely reported to disrupt lipid balance. Moreover, BPA has gained significant attention due to its estrogenic activity. While both ferroptosis and the G-protein-coupled estrogen receptor (GPER) have been implicated in lipid metabolism, their link to BPA-induced lipid accumulation remains unclear. In this study, chickens were randomly assigned to three groups and housed them for 4 weeks: a control group (0 µg/L BPA), a low dose group (50 µg/L BPA) and a high dose group (5000 µg/L BPA) to investigate the underlying mechanism of BPA-induced hepatotoxicity. Our results showed that BPA exposure significantly increased the contents of TG, TC, and LDL-C while decreasing HDL-C levels. We also found that BPA treatment altered the levels of genes involved in fatty acid ß-oxidation (ampkα, cpt-1, and ppaα), synthesis (acc, fas, scd-1, and srebp-1) and absorption (lpl and cd36). Moreover, the results showed that the BPA group had higher levels of IL-1ß, IL-18 and TNF-α. These results indicated that BPA exposure disrupted lipid metabolism and induced inflammation in the liver. We also demonstrated that BPA caused hepatic ferroptosis by raising iron content and the expression of genes related to lipid peroxidation (lpcat3, acsl4 and alox15), while reducing the expression of antioxidant system-associated genes (gpx4, slc7a11 and slc3a2). Importantly, BPA remarkably activated GPER expression in the liver. Interestingly, inhibition of GPER remarkably ameliorated BPA-induced lipid metabolism disorder, inflammatory response, and ferroptosis, indicating the crucial role of GPER in BPA-induced liver abnormalities. These findings highlight the link between GPER and ferroptosis in BPA-induced hepatotoxicity, providing new insights into the potential hazard of BPA.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Ferroptosis , Animales , Receptores de Estrógenos/genética , Receptores de Estrógenos/metabolismo , Metabolismo de los Lípidos , Pollos/metabolismo , Hígado/metabolismo , Estrógenos/metabolismo , Compuestos de Bencidrilo/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Proteínas de Unión al GTP/metabolismo , Lípidos
10.
Int J Biol Macromol ; 246: 125584, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37391002

RESUMEN

Canine distemper virus (CDV) is an economically important virus responsible for canine distemper (CD), a highly contagious disease that afflicts various animal species worldwide. The hemagglutinin (H) protein is the major neutralizing target of virus. Therefore, it is often considered as immunogen to prepare neutralizing antibodies. The accurate identification of neutralizing epitope will provide important antigenic information and extend the knowledge of mechanisms of virus neutralization. In this study, we generated a neutralizing monoclonal antibody (mAb) 4C6 against CDV H protein, and defined the minimal linear epitope 238DIEREFDT245, which was highly conserved in America-1 genotype of CDV strains (vaccines). The mAb 4C6 could not react with a CDV strain that had two substitutions of D238Y and R241G in the epitope, which appeared in most CDV strains of the other genotypes. Besides, a few different amino acid mutations in the epitope were also included. Collectively, the epitope 238DIEREFDT245 was variable in the other genotypes of CDV strains. The epitope 238DIEREFDT245 was exposed to the surface of CDV H protein, showing good antigenicity. These data will provide insights into structure, function and antigenicity of H protein and lay the foundation for the development of diagnostic technologies and vaccine design for CDV.


Asunto(s)
Virus del Moquillo Canino , Vacunas , Animales , Epítopos/genética , Virus del Moquillo Canino/genética , Anticuerpos Monoclonales , Genotipo , Filogenia
11.
Vet Res ; 54(1): 30, 2023 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-37009870

RESUMEN

Canine distemper (CD) is a highly contagious and an acutely febrile disease caused by canine distemper virus (CDV), which greatly threatens the dog and fur industry in many countries. Endoplasmic reticulum (ER)-associated degradation (ERAD) is a protein quality control system for the degradation of misfolded proteins in the ER. In this study, a proteomic approach was performed, and results found the E3 ubiquitin ligase 3-hydroxy-3-methylglutaryl reductase degradation protein 1 (Hrd1), which is involved in ERAD, as one of the CDV H-interacting proteins. The interaction of Hrd1 with CDV H protein was further identified by Co-IP assay and confocal microscopy. Hrd1 degraded the CDV H protein via the proteasome pathway dependent on its E3 ubiquitin ligase activity. Hrd1 catalyzed the K63-linked polyubiquitination of CDV H protein at lysine residue 115 (K115). Hrd1 also exhibited a significant inhibitory effect on CDV replication. Together, the data demonstrate that the E3 ligase Hrd1 mediates the ubiquitination of CDV H protein for degradation via the proteasome pathway and inhibits CDV replication. Thus, targeting Hrd1 may represent a novel prevention and control strategy for CDV infection.


Asunto(s)
Virus del Moquillo Canino , Animales , Perros , Virus del Moquillo Canino/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteómica , Proteínas , Ubiquitina-Proteína Ligasas/metabolismo , Replicación Viral
12.
Vet Microbiol ; 279: 109669, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36724731

RESUMEN

Wild birds play a critical role in avian influenza virus (AIV) ecology and some outbreaks of avian influenza in human originate from wild birds, suggesting that epidemiological surveillance and interspecies-transmission analysis of AIVs in wild birds are critical. Since 2019, we have performed sampling in Yancheng Wetland along the East Asian-Australasian Flyway. Totally, 2054 fecal swabs were collected and one H3N8, two H3N1, one H10N8, and three H10N1 were isolated. Three H3 gene of AIVs we isolated belonged to Eurasian lineage, but the four H10 gene clustered into North American lineage. What's more, the H3 and the foreign H10 gene had generated novel reassortants in Yancheng wetland. Receptor binding assay indicated that nearly all strains, except D369/H10N1, presented a dual receptor-binding profile and bound to avian-type receptor preferentially. In animal experiment, all isolates could infect mice without prior adaptation and induce histopathological changes in mice lungs, moreover, all H3 subtype AIVs obviously triggered weight loss of mice. In addition to lung and turbinate, D322/H3N1, D338/H3N8, D211/H10N8 and D266/H10N1 could spread to brain and kidney or liver or spleen, showing a wider range of tissue tropism. Multiple mutants associated with mammalian adaptation were also detected in all isolates according to molecular analysis. These findings revealed that H3 and H10 AIVs circulating in wild birds in Yancheng Wetland underwent complex reassortment and increased mammalian adaptation, which highlighted the necessity to monitor the diverse reassortment of AIVs in wild birds and evaluate the risks of H3 and H10 viruses to human health.


Asunto(s)
Subtipo H3N8 del Virus de la Influenza A , Virus de la Influenza A , Gripe Aviar , Animales , Ratones , Humanos , Humedales , Subtipo H3N8 del Virus de la Influenza A/genética , Filogenia , Aves , Animales Salvajes , Virus de la Influenza A/genética , China/epidemiología , Mamíferos
13.
Free Radic Biol Med ; 193(Pt 1): 213-226, 2022 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-36265794

RESUMEN

Metabolic dysfunction-associated fatty liver disease (MAFLD) has become the most common chronic liver disorders in the world, and yet has no approved pharmacotherapy due to the etiology is complex. In the last ten years, increasing evidence have identified the environmental pollutants as risk factors for MAFLD. However, the underlying mechanism remains unclear. Our study found that bromoacetic acid (BAA, a typical kind of environmental toxin) increased triglycerides and total cholesterol levels as well as induced obvious hepatic steatosis and inflammation. The lipidomics showed that ferroptosis was implicated in the environmental toxin-linked MAFLD. Besides, the analysis of microbial metabolomics showed significant change of gut microbiome in BAA groups and the content of gut microbiota metabolite (glycochenodeoxycholate, GCDCA) increased sharply. In vitro study, we observed features of ferroptotic cells by transmission electron microscopy after BAA/GCDCA treatment. Besides, we demonstrated that BAA/GCDCA significantly increased iron contents, with upregulating transferrin receptor (TFR) and acyl-CoA synthetase long-chain family 4 (ACSL4) expression levels. By contrast, iron chelator or silencing TFR relieved BAA/GCDCA-induced lipid metabolism disorder and inflammation. What's more, the interaction between TFR and ACSL4 was also identified. Taken together, we found that, in response to environmental toxin, gut microbiota metabolite GCDCA activates TFR-ACSL4-mediated ferroptosis, which triggered subsequent lipid metabolism disorder and inflammation. Moreover, these findings firstly highlighted the functional relevance among ferroptosis, lipid metabolism and gut microbiota metabolite during environmental pollutant exposure, which shed light on the deep mechanism of environmental toxin-related MAFLD, providing potential targets for the prevention of MAFLD.


Asunto(s)
Ferroptosis , Microbioma Gastrointestinal , Humanos , Ácido Glicoquenodesoxicólico , Coenzima A Ligasas/genética , Coenzima A Ligasas/metabolismo , Receptores de Transferrina , Inflamación
14.
Cell Rep ; 41(2): 111454, 2022 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-36223738

RESUMEN

Estrogen receptor ß (ERß) and NOD-like receptor family pyrin domain containing 6 (NLRP6) are highly expressed in intestinal tissues. Loss of ERß and NLRP6 exacerbate colitis in mouse models; however, the underlying mechanisms are incompletely understood. Here, we report that ERß directly activates the NLRP6 gene expression via binding to estrogen responsive element of Nlrp6 gene promoter. ERß also physically interacts with the NLRP6 nucleotide-binding domain and promotes NLRP6 inflammasome assembly. The ERß-NLRP6 axis then interacts with multiple autophagy-related proteins, including ULK1, BECN1, ATG16L1, LC3B, and p62, and affects the autophagosome biogenesis and autophagic flux. Finally, NLRP6-mediated autophagy suppresses the inflammatory response by promoting the K48-linked polyubiquitination of ASC, Casp-1 p20, IL-1ß, TNF-α, and prohibitin-2. Thus, ERß-NLRP6 direct an anti-inflammatory response by promoting autophagy. Our work uncovers an ERß-NLRP6-autophagy pathway as a regulatory mechanism that maintains intestinal epithelial cell homeostasis and facilitates tissue repair in colitis.


Asunto(s)
Colitis , Receptor beta de Estrógeno , Receptores de Superficie Celular , Animales , Antiinflamatorios , Autofagia/genética , Colitis/genética , Receptor beta de Estrógeno/genética , Estrógenos , Inflamasomas/metabolismo , Ratones , Proteínas NLR , Nucleótidos , Receptores de Superficie Celular/genética , Factor de Necrosis Tumoral alfa
15.
Food Funct ; 13(20): 10501-10515, 2022 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-36148688

RESUMEN

In this study, a novel heteropolysaccharide (EPS 7-4) with a molecular weight of 53 387 Da was isolated from Lactobacillus crispatus, and it was mainly composed of mannose (36.9%) and glucose (30.8%). EPS 7-4 showed excellent inhibitory effects on the proliferation, biofilm formation, and virulence factor gene expression of Salmonella typhimurium (S. typhimurium) by disrupting the integrity of the bacterial wall. Furthermore, EPS 7-4 can effectively restrict bacterial translocation, upregulate the abundance of Lactobacillus spp. and Bifidobacterium spp., and alleviate the S. typhimurium induced severe inflammatory response in the intestinal tract of mice. Besides, we demonstrated that EPS 7-4 can protect mice by inhibiting S. typhimurium induced pyroptosis, with the mechanism that EPS 7-4 affects ASC oligomerization during inflammasome-mediated pyroptosis. Therefore, due to its excellent anti-bacterial and anti-inflammatory abilities, EPS 7-4 is a promising health regulator owing to its excellent antibacterial and anti-inflammatory abilities.


Asunto(s)
Lactobacillus crispatus , Salmonella typhimurium , Animales , Antibacterianos/metabolismo , Antibacterianos/farmacología , Glucosa/metabolismo , Inflamasomas/metabolismo , Manosa/metabolismo , Ratones , Piroptosis , Factores de Virulencia/metabolismo
16.
Environ Toxicol ; 37(12): 2910-2923, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36017758

RESUMEN

Since the outbreak of COVID-19, widespread utilization of disinfectants has led to a tremendous increase in the generation of disinfection byproducts worldwide. Bromoacetic acid (BAA), one of the common disinfection byproducts in the environment, has triggered public concern because of its adverse effects on urinary system in mammals. Nevertheless, the BAA-induced nephrotoxicity and potential mechanism in birds still remains obscure. According to the detected content in the Taihu Lake Basin, the model of BAA exposure in chicken was established at doses of 0, 3, 300, 3000 µg/L for 4 weeks. Our results indicated that BAA exposure caused kidney swelling and structural disarrangement. BAA led to disorder in renal function (CRE, BUN, UA) and increased apoptosis (Bax, Bcl-2, caspase3). BAA suppressed the expression of mitochondrial biogenesis genes (PGC-1α, Nrf1, TFAM) and OXPHOS complex I genes (ND1, ND2, ND3, ND4, ND4L, ND5, ND6). Subsequently, BAA destroyed the expression of Nrf2 antioxidant reaction genes (Nrf2, Keap1, HO-1, NQO1, GCLM, GCLC). Furthermore, renal oxidative damage led to disorder in uric acid metabolism genes (Mrp2, Mrp4, Bcrp, OAT1, OAT2, OAT3) and exacerbated destruction in renal function. Overall, our study provided insights into the potential mechanism of BAA-induced nephrotoxicity, which were important for the clinical monitoring and prevention of BAA.


Asunto(s)
COVID-19 , Factor 2 Relacionado con NF-E2 , Animales , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Pollos/metabolismo , Ácido Úrico/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2 , Transducción de Señal , Proteínas de Neoplasias , Estrés Oxidativo , Mitocondrias/metabolismo , Riñón , Mamíferos/metabolismo
17.
Chem Biol Interact ; 365: 110115, 2022 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-35988748

RESUMEN

The bromoacetic acid (BAA) is one of the most teratogenic and neurotoxic disinfection byproducts. Birds take environmental water as their habitat and are inevitably affected by BAA in the environment. However, the neurotoxicity caused by BAA in birds has not been reported and the mechanism remains unclear. In this study, we chose chickens as the avian model to explore the effects of different concentrations of BAA on the brain tissues. Here, we selected the 3 µg/L dose of BAA detected in Tai Lake basin as a reference, and designed 1-, 100-, and 1000-fold of the environmental exposure dose as the experimental doses to explore the neurotoxicity of BAA in birds. Results showed that BAA increased the number of pyknotic nuclear neurons, deformed vascular sheaths, and glial cells in the brain. BAA inhibited the activity of antioxidant enzymes and the expression of antioxidant genes. With the increase of BAA concentration, the oxidative stress-responsive transcription factor NF-κB was activated. Furthermore, BAA remarkably changed the expression of lipid metabolism related genes (i.e., acc, gpat, hmgr, pparα, cpt1, and ampkα). Importantly, BAA decreased the mRNA and protein expression levels of autophagy-related genes (i.e., atg5, ulk1, beclin1, and lc3). Meantime, BAA increased the mRNA and protein levels of apoptotic and pro-apoptotic genes, such as p53, bax, cytochrome c, caspase-9, and caspase-3. Overall, our study provided new insights into the potential neurotoxic effects of BAA in birds, which was important for the clinical monitoring and prevention of BAA.


Asunto(s)
Pollos , FN-kappa B , Acetatos , Animales , Antioxidantes/metabolismo , Encéfalo/metabolismo , Pollos/metabolismo , FN-kappa B/metabolismo , Estrés Oxidativo , ARN Mensajero/metabolismo
18.
J Virol ; 96(15): e0080722, 2022 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-35852354

RESUMEN

Fowl adenovirus serotype 4 (FAdV-4) infection results in serious hepatitis-hydropericardium syndrome (HHS) in broilers, which has caused great economic losses to the poultry industry; however, the specific host responses to FAdV-4 remain unknown. In this study, we identified 141 high-confidence protein-protein interactions (PPIs) between the main viral proteins (Hexon, Fiber 1, Fiber 2, and Penton bases) and host proteins via a liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay. We found that heat shock protein 70 (Hsp70), the protein with the highest score, and its cofactor DnaJ heat shock protein 40 family member C7 (DnaJC7) could negatively regulate the replication of FAdV-4. Furthermore, the nucleotide binding domain (NBD) of Hsp70 and the J domain of DnaJC7 were necessary for inhibiting FAdV-4 replication. We verified that DnaJC7 as a bridge could bind to Hsp70 and Hexon, assisting the indirect interaction between Hsp70 and Hexon. In addition, we found that FAdV-4 infection strongly induced the expression of autophagy proteins and cellular Hsp70 in a dose-dependent manner. Blockage of Hexon by Hsp70 overexpression was significantly reduced when the autophagy pathway was blocked by the specific inhibitor chloroquine (CQ). Our results showed that Hsp70 was co-opted by DnaJC7 to interact with viral Hexon and inhibited Hexon through the autophagy pathway, leading to a considerable restriction of FAdV-4 replication. IMPORTANCE FAdV-4, as the main cause of HHS, has quickly spread all over the world in recent years, seriously threatening the poultry industry. The aim of this study was to identify the important host proteins that have the potential to regulate the life cycle of FAdV-4. We found that Hsp70 and DnaJC7 played crucial roles in regulating the amount of viral Hexon and extracellular viral titers. Moreover, we demonstrated that Hsp70 interacted with viral Hexon with the assistance of DnaJC7, followed by suppressing Hexon protein through the autophagy pathway. These results provide new insight into the role of the molecular chaperone complex Hsp70-DnaJC7 in FAdV-4 infection and suggest a novel strategy for anti-FAdV-4 drug development by targeting the specific interactions among Hsp70, DnaJC7 and Hexon.


Asunto(s)
Infecciones por Adenoviridae , Adenoviridae , Proteínas de la Cápside , Pollos , Proteínas HSP70 de Choque Térmico , Chaperonas Moleculares , Replicación Viral , Adenoviridae/clasificación , Adenoviridae/efectos de los fármacos , Adenoviridae/crecimiento & desarrollo , Adenoviridae/aislamiento & purificación , Infecciones por Adenoviridae/tratamiento farmacológico , Infecciones por Adenoviridae/veterinaria , Infecciones por Adenoviridae/virología , Animales , Autofagia/efectos de los fármacos , Proteínas de la Cápside/antagonistas & inhibidores , Proteínas de la Cápside/metabolismo , Pollos/virología , Cloroquina/farmacología , Cromatografía Liquida , Proteínas HSP70 de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Enfermedades de las Aves de Corral/tratamiento farmacológico , Enfermedades de las Aves de Corral/virología , Serogrupo , Espectrometría de Masas en Tándem , Replicación Viral/efectos de los fármacos
19.
Food Chem Toxicol ; 166: 113263, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35777715

RESUMEN

Fumonisin B1 (FB1) contamination in feed is of great concern nowadays. The intestine would be the first line when FB1-contaminated food or feed was ingested. However, the intestinal toxicity and mechanism of FB1 have rarely been studied. In this study, we found that FB1 inhibited cell viability, and promoted the severe release of lactate dehydrogenase. Meantime, FB1 destroyed the intestinal physical barrier by reducing the expressions of tight junctions. And FB1 induced excessive production of cytokines like tumor necrosis factor-α, resulting in damage to the intestinal immunological barrier. Furthermore, we observed that FB1 preferentially inhibited the expressions of ceramide synthase 2 (CerS2) and upregulated the expression of endoplasmic reticulum (ER) stress markers. The siRNA-mediated knockdown of CerS2 and CerS2 overexpression proved that CerS2 depletion induced by FB1 triggered ER stress, which then destructed the intestinal barrier. FB1-induced intestinal impairment could be restored by CerS2 over-expression or 4-Phenylbutyric acid (ER stress inhibitor). Overall, our findings demonstrated intestinal toxicity and potential mechanism of FB1, and the intestinal impairment risk posed by FB1 must be taken seriously.


Asunto(s)
Estrés del Retículo Endoplásmico , Fumonisinas , Fumonisinas/toxicidad , Intestinos , Oxidorreductasas
20.
Sci Total Environ ; 836: 155628, 2022 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-35504394

RESUMEN

The widespread application of bisphenols (BPs) has made them ubiquitous in the environment. Although the side effects of bisphenol A (BPA) substitutes have received increasing attention, studies on their reproductive toxicity remain lacking. In this research, the effects of BPA and its substitutes, including bisphenol S (BPS), bisphenol F (BPF), and bisphenol AF (BPAF), on the male reproductive system were evaluated. Results proved that these BPs disturbed germ cell proliferation, induced germ cell apoptosis, and perturbed sperm physiologies and spermatogenesis, which resulted from the disruption of testosterone (T) biosynthesis in Leydig cells (LCs). Importantly, in vitro and in vivo studies indicated that the exhausted cholesterol in LCs accounted for the reduced T production. Furthermore, the knockdown of peroxisome proliferator-activated receptor alpha (PPARα) remarkably ameliorated the downregulation of cholesterogenesis-related genes (i.e., Hmgcs1, Hmgcr, and Srebf2), indicating that PPARα played a critical role in BPs-induced testicular dysfunction. Overall, our studies indicated that BPS, BPF, and BPAF could induce testicular toxic effects similar to that of BPA, which were associated with the PPARα pathway.


Asunto(s)
PPAR alfa , Testosterona , Compuestos de Bencidrilo/toxicidad , Colesterol , Homeostasis , Humanos , Masculino , Fenoles , Testosterona/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA