Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Poult Sci ; 103(7): 103729, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38676965

RESUMEN

Since 2015, an outbreak of an infectious disease in broilers caused by fowl adenovirus serotype 4 (FAdV-4) has occurred in China, resulting in substantial economic losses. Rapid, accurate, and specific detection are significant in the prevention and control of FAdV-4. In this study, an FAdV-4 detection method combining loop-mediated isothermal amplification (LAMP) and Pyrococcus furiosus Argonaute (PfAgo) was established. Specific primers, guide DNAs (gDNAs), and molecular beacons were designed to target a conserved region of the FAdV-4 hexon gene. After optimizing the reaction conditions, the minimum detection of this assay could reach 5 copies. It only amplified FAdV-4, and there was no cross-reactivity with other pathogens. The assay took about only 50 min, and the results could be visualized with the naked eye under ultraviolet or blue light, getting rid of specialized instruments. This novel LAMP-PfAgo assay was validated by using 20 clinical samples and the results were identical to gold-standard real-time polymerase chain reaction method. In summary, the LAMP-PfAgo assay established in the paper provides a rapid, reliable, convenient, ultra-sensitive and highly specific tool for the on-site detection and clinical diagnosis of FAdV-4.


Asunto(s)
Infecciones por Adenoviridae , Aviadenovirus , Pollos , Técnicas de Amplificación de Ácido Nucleico , Enfermedades de las Aves de Corral , Pyrococcus furiosus , Técnicas de Amplificación de Ácido Nucleico/veterinaria , Técnicas de Amplificación de Ácido Nucleico/métodos , Infecciones por Adenoviridae/veterinaria , Infecciones por Adenoviridae/virología , Infecciones por Adenoviridae/diagnóstico , Animales , Enfermedades de las Aves de Corral/virología , Enfermedades de las Aves de Corral/diagnóstico , Pyrococcus furiosus/genética , Aviadenovirus/genética , Aviadenovirus/aislamiento & purificación , Aviadenovirus/clasificación , Sensibilidad y Especificidad , Serogrupo , Proteínas Argonautas/genética , Técnicas de Diagnóstico Molecular/veterinaria , Técnicas de Diagnóstico Molecular/métodos
2.
Res Vet Sci ; 170: 105185, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38422838

RESUMEN

Outer membrane vesicles (OMVs) are soluble mediators secreted by Gram-negative bacteria that are involved in communication. They can carry a variety of harmful molecules, which induce cytotoxic responses and inflammatory reactions in the absence of direct host cell-bacterium interactions. We previously reported the isolation of OMVs from avian pathogenic Escherichia coli (APEC) culture medium by ultracentrifugation, and characterized them as a substance capable of inducing the production of pro-inflammatory cytokines and causing tissue damage. However, the specific mechanisms by which APEC-secreted OMVs activate host cell death signaling and inflammation are poorly understood. Here, we show that OMVs are involved in the pathogenesis of APEC disease. In an APEC/chicken macrophage (HD11) coculture system, APEC significantly promoted HD11 cell death and inflammatory responses by secreting OMVs. Using western blotting analysis and specific pathway inhibitors, we demonstrated that the induction of HD11 death by APEC OMVs is associated with the activation of receptor interacting serine/threonine kinase 1 (RIPK1)-, receptor interacting serine/threonine kinase 3 (RIPK3)-, and mixed lineage kinase like pseudokinase (MLKL)-induced necroptosis. Notably, necroptosis inhibitor-1 (Nec-1), an RIPK1 inhibitor, reversed these effects. We also showed that APEC OMVs promote the activation of the NF-κB signaling pathway, leading to the phosphorylation of IκB-α and p65, the increased nuclear translocation of p65, and the significant upregulation of interleukin 1ß (IL-1ß) and IL-6 transcription. Importantly, APEC OMVs-induced IL-1ß and IL-6 mRNA expression and the activation of the NF-κB signaling pathway were similarly significantly inhibited by a RIPK1-specific inhibitor. Based on these findings, we have established that RIPK1 plays a dual role in HD11 cells necroptosis and the proinflammatory cytokine (IL-1ß and IL-6) expression induced by APEC OMVs. RIPK1 mediated the induction of necroptosis and the activation of the NF-κB in HD11 cells via APEC OMVs. The results of this study provide a basis for further investigation of the contribution of OMVs to the pathogenesis of APEC.


Asunto(s)
Membrana Externa Bacteriana , Escherichia coli , FN-kappa B , Necroptosis , Proteína Serina-Treonina Quinasas de Interacción con Receptores , Animales , Pollos/metabolismo , Citocinas , Escherichia coli/metabolismo , Escherichia coli/patogenicidad , Inflamación/patología , Inflamación/veterinaria , Interleucina-6 , Macrófagos/metabolismo , Macrófagos/microbiología , FN-kappa B/metabolismo , Serina , Transducción de Señal , Membrana Externa Bacteriana/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo
3.
Poult Sci ; 103(4): 103514, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38367471

RESUMEN

The type VI secretion system (T6SS) of avian pathogenic Escherichia coli (APEC) can affect the functions of eukaryotic cells by secreting or injecting effectors. Hemolysin co-regulatory protein (Hcp), one of the markers of the T6SS, is both a structural protein and an effector protein of the T6SS. According to previous studies, mitochondria in eukaryotic cells are targeted by pathogenic bacteria. However, little is known about the regulation of mitochondria in eukaryotic host cells by the T6SS effector protein Hcp of APEC. In our study, DF-1 cells co-incubated with Hcp2a protein for 6 h showed decreased mitochondrial membrane potential, increased Ca2+ concentration, and increased cellular reactive oxygen species (ROS) levels. We therefore conclude that Hcp2a protein causes dysfunction to mitochondria in DF-1 cells. To explain the mechanism that causes mitochondrial dysfunction, we reanalyzed the Hcp2a interaction protein dataset in DF-1 cells, and the Leucine zipper EF-hand-containing transmembrane protein 1 (LETM1), which is associated with mitochondria, was screened. The protein and molecular docking results showed that Hcp2a protein and LETM1 protein have better binding. Finally, subcellular localization results showed that Hcp2a was localized to mitochondria. In summary, Hcp2a effector proteins caused dysfunction to DF-1 cellular mitochondria, and we hypothesize that the interaction of Hcp2a protein with LETM1 protein induces mitochondrial dysfunction and promotes mitochondrial localization of Hcp2a in DF-1 cells.


Asunto(s)
Proteínas Aviares , Enfermedades Mitocondriales , Animales , Escherichia coli , Simulación del Acoplamiento Molecular , Pollos/microbiología , Enfermedades Mitocondriales/veterinaria
4.
Vet Sci ; 11(2)2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38393105

RESUMEN

We analyzed metagenome data of feces from sows at different physiological periods reared on large-scale farms in Anhui Province, China, to provide a better understanding of the microbial diversity of the sow intestinal microbiome and the structure of antibiotic-resistance genes (ARGs) and virulence genes it carries. Species annotation of the metagenome showed that in the porcine intestinal microbiome, bacteria were dominant, representing >97% of the microorganisms at each physiological period. Firmicutes and Proteobacteria dominated the bacterial community. In the porcine gut microbiome, the viral component accounted for an average of 0.65%, and the species annotation results indicated that most viruses were phages. In addition, we analyzed the microbiome for ARGs and virulence genes. Multidrug-like, MLS-like, and tetracycline-like ARGs were most abundant in all samples. Evaluation of the resistance mechanisms indicated that antibiotic inactivation was the main mechanism of action in the samples. It is noteworthy that there was a significant positive correlation between ARGs and the total microbiome. Moreover, comparative analysis with the Virulence Factor Database showed that adhesion virulence factors were most abundant.

5.
Animal Model Exp Med ; 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38230452

RESUMEN

BACKGROUND: The chicken chorioallantoic membrane (CAM) model is a potential alternative to the mouse model based on the 3R principles. However, its value for determination of the in vivo behaviors of radiolabeled peptides through positron emission tomography (PET) imaging needed investigation. Herein, the chicken CAM tumor models were established, and their feasibility was evaluated for evaluating the imaging properties of radiolabeled peptides using a 68 Ga-labeled HER2 affibody. METHODS: Two human breast cancer cell lines were inoculated into chicken CAM and mice, respectively. The tumor-targeting potential and pharmacokinetic profile of a 68 Ga-labeled affibody, 68 Ga-MZHER, in both tumor models were also determined. RESULTS: The tumor-formation time in chicken CAM model was shorter than that of mouse model. The uptake values of human epithelial growth factor receptor-2 (HER2)-positive Bcap37 tumors in chicken CAM and mouse models were 5.36 ± 0.26% ID/g and 5.26 ± 0.43% ID/g at 30 min postinjection of 68 Ga-MZHER, respectively. At the same time points, the uptake values of HER2-negative MDA-MB-231 tumors in the chicken CAM models and mouse models were 1.57 ± 0.15% ID/g and 1.67 ± 0.25% ID/g, respectively. Ex vivo biodistribution confirmed that more radioactivity accumulated in Bcap37 tumors than in MDA-MD-231 tumors in both CAM and mouse models. CONCLUSION: In this study, the CAM tumor model was successfully prepared. The chicken CAM model is a novel tool for quickly determining the in vivo properties of radiolabeled peptides targeting biomarkers. It may be beneficial for early monitoring of the therapeutic effect of a new drug through PET imaging with specific peptides.

6.
Anal Bioanal Chem ; 416(2): 363-372, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37935845

RESUMEN

A recent outbreak of porcine circovirus-like virus (PCLV), a virus that may be associated with porcine diarrhea, has been reported in swine herds in China. The virus is spreading rapidly, causing huge economic losses to the swine farming industry. To achieve the rapid, inexpensive, and sensitive detection of PCLV, we combined loop-mediated isothermal amplification (LAMP) and the CRISPR/Cas12a system, whose fluorescence intensity readout can detect PCLV ORF4 gene levels as low as 10 copies. To overcome the need for sophisticated equipment, lateral flow strip reading technology was introduced for the first time in a LAMP-Cas12a-based system to detect PCLV. The lateral flow strip (LFS) results were readout by the naked eye, and the method was highly sensitive with a detection limit of 10 copies, with a detection time of about 60 min. In addition, the method is highly specific and has no cross-reactivity with other related viruses. In conclusion, LAMP-CRISPR/Cas12a-based assays have the advantages of rapidity, accuracy, portability, low cost, and visualization of the results. They therefore have great potential, especially for areas where specialized equipment is lacking, and can expect to be an ideal method for early diagnosis and on-site detection of PCLV.


Asunto(s)
Circovirus , Enfermedades de los Porcinos , Virus , Porcinos , Animales , Circovirus/genética , Sistemas CRISPR-Cas , Enfermedades de los Porcinos/diagnóstico , Sensibilidad y Especificidad , Técnicas de Amplificación de Ácido Nucleico/métodos
7.
BMC Vet Res ; 19(1): 262, 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38066606

RESUMEN

BACKGROUND: Avian pathogenic Escherichia coli (APEC) causes tracheal damage and heterophilic granulocytic infiltration and inflammation in infected chicks. In this study, we infected chick tracheal tissue with strain AE17 and produced pathological sections with proteomic sequencing. We compared the results of pathological sections from the APEC-infected group with those from the PBS control group; the pathological sections from the experimental group showed hemorrhage, fibrinization, and infiltration of heterophilic granulocytes in the tracheal tissue. In order to explore the effect on proteomics on inflammation and to further search for the caus. RESULTS: The tandem mass tag-based (TMT) sequencing analysis showed 224 upregulated and 140 downregulated proteins after infection with the AE17 strain. Based on the results of KEGG in Complement and coagulation cascades, differential protein expression in the Protein export pathway was upregulated. CONCLUSIONS: With these results, we found that chemokines produced by the Complement and coagulation cascades pathway may cause infiltration of heterophilic granulocytes involved in inflammation, as well as antimicrobial factors produced by the complement system to fight the infection together.These results suggest that APEC causes the infiltration of heterophilic granulocytes through the involvement of the complement system with serine protease inhibitors.


Asunto(s)
Infecciones por Escherichia coli , Proteínas de Escherichia coli , Enfermedades de las Aves de Corral , Animales , Proteómica , Factores de Virulencia/metabolismo , Infecciones por Escherichia coli/veterinaria , Infecciones por Escherichia coli/patología , Escherichia coli , Pollos/metabolismo , Granulocitos , Inflamación/veterinaria , Enfermedades de las Aves de Corral/patología
8.
Animals (Basel) ; 13(24)2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38136849

RESUMEN

With the widespread promotion of the green feeding concept of "substitution and resistance", there is a pressing need for alternative products in feed and breeding industries. Employing lactic acid bacteria represents one of the most promising antimicrobial strategies to combat infections caused by pathogenic bacteria. As such, we analyzed the intestinal tract of Anhui local pig breeds, including LiuBai Pig, YueHei Pig, and HuoShou Pig, to determine the composition and diversity of intestinal microbiota using 16S rRNA. Further, the functionality of the pigs' intestinal microbiota was studied through metagenomic sequencing. This study revealed that lactic acid bacteria were the primary contributors to the functional composition, as determined through a species functional contribution analysis. More specifically, the functional contribution of lactic acid bacteria in the HuoShou Pig group was higher than that of the LiuBai Pig and YueHei Pig. Subsequently, the intestinal contents of the HuoShou Pig group were selected for the screening of the dominant lactic acid bacteria strains. Out of eight strains of lactic acid bacteria, the acid-production capacity, growth curve, and tolerance to a simulated intestinal environment were assessed. Additional assessments included surface hydrophobicity, the self-aggregation capability, co-agglutination of lactic acid bacteria with pathogenic bacteria, and an in vitro bacteriostatic activity assay. Lactobacillus johnsonii L5 and Lactobacillus reuteri L8 were identified as having a strong overall performance. These findings serve as a theoretical basis for the further development of pig-derived probiotics, thereby promoting the application of lactic acid bacteria to livestock production.

9.
Vet Res ; 54(1): 70, 2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37644523

RESUMEN

APEC encodes multiple virulence factors that have complex pathogenic mechanisms. In this study, we report a virulence factor named EspE3, which can be secreted from APEC. This protein was predicted to have a leucine-rich repeat domain (LRR) and may have a similar function to IpaH class effectors of the type III secretion system (T3SS). For further exploration, the regulatory correlation between the espE3 and ETT2 genes in APEC was analysed. We then assessed the pathogenicity of EspE3, detected it in APEC secretion proteins and screened the proteins of EspE3 that interact with chicken trachea epithelial cells. This study provides data on a new virulence factor for further exploring the pathogenic mechanism of APEC.


Asunto(s)
Pollos , Factores de Virulencia , Animales , Virulencia , Factores de Virulencia/genética , Transporte Biológico , Escherichia coli/genética
10.
Vet Microbiol ; 283: 109775, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37210862

RESUMEN

Avian pathogenic Escherichia coli (APEC) causes avian colibacillosis and leads to high mortality in poultry and huge economic losses. Therefore, it is important to investigate the pathogenic mechanisms of APEC. Outer membrane protein OmpW is involved in the environmental adaptation and pathogenesis of Gram-negative bacteria. OmpW is regulated by many proteins, including FNR, ArcA, and NarL. In previous studies, regulator EtrA is involved in the pathogenicity of APEC and affects the transcript levels of ompW. However, the function of OmpW in APEC and its regulation remain unclear. In this study, we constructed mutant strains with altered etrA and/or ompW genes to evaluate the roles of EtrA and OmpW in the biological characteristics and pathogenicity of APEC. Compared with wild-type strain AE40, mutant strains ∆etrA, ∆ompW, and ∆etrA∆ompW showed significantly lower motility, lower survival under external environmental stress, and lower resistance to serum. Biofilm formation by ∆etrA and ∆etrA∆ompW was significantly enhanced relative to that of AE40. The transcript levels of TNF-α, IL1ß, and IL6 were also significantly enhanced in DF-1 cells infected with these mutant strains. Animal infection assays showed that deletion of etrA and ompW genes attenuated the virulence of APEC in chick models, and damage to the trachea, heart, and liver caused by these mutant strains was attenuated relative to that caused by the wild-type strain. RT-qPCR and ß-galactosidase assay showed that EtrA positively regulates the expression of the ompW gene. These findings demonstrate that regulator EtrA positively regulates the expression of OmpW, and that they both contribute to APEC motility, biofilm formation, serum resistance, and pathogenicity.


Asunto(s)
Infecciones por Escherichia coli , Proteínas de Escherichia coli , Enfermedades de las Aves de Corral , Animales , Escherichia coli/fisiología , Virulencia/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/veterinaria , Pollos , Enfermedades de las Aves de Corral/microbiología , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas de Unión al ADN/metabolismo
11.
Vet Res ; 54(1): 6, 2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36717947

RESUMEN

The type VI secretion system (T6SS) is a secretion apparatus widely found in pathogenic Gram-negative bacteria and is important for competition among various bacteria and host cell pathogenesis. Hcp is a core component of functional T6SS and transports toxic effectors into target cells by assembling to form tube-like structures. Studies have shown that Hcp simultaneously acts as an effector to influence cellular physiological activities; however, the mechanism of its activity in host cells remains unclear. To investigate the target of effector protein Hcp2a in a chicken fibroblast cell line, we first detected the subcellular localization of Hcp2a in DF-1 cells by indirect immunofluorescence assay. The results showed that Hcp2a protein was localized in the endoplasmic reticulum of DF-1 cells. We also used a streptavidin-biotin affinity pull-down assay combined with LC-MS/MS to screen DF-1 cell lysates for proteins that interact with Hcp2a and analyze the cellular functional pathways affected by them. The results showed that Hcp2a interacted with 52 DF-1 cellular proteins that are involved in multiple intracellular pathways. To further explore the mechanism of Hcp2a protein targeting the endoplasmic reticulum of DF-1 cells, we screened three endoplasmic reticulum-associated proteins (RSL1D1, RPS3A, and RPL23) from 52 prey proteins of Hcp2a for protein-protein molecular docking analysis. The docking analysis showed that the effector protein Hcp2a and the RPL23 protein had good complementarity. Overall, we propose that Hcp2a has strong binding activity to the RPL23 protein in DF-1 cells and this may help Hcp2a anchor to the endoplasmic reticulum in DF-1 cells.


Asunto(s)
Pollos , Escherichia coli , Animales , Escherichia coli/metabolismo , Pollos/metabolismo , Cromatografía Liquida/veterinaria , Simulación del Acoplamiento Molecular , Espectrometría de Masas en Tándem/veterinaria , Proteínas Bacterianas/metabolismo , Fibroblastos , Estrés del Retículo Endoplásmico
12.
Poult Sci ; 102(2): 102364, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36525747

RESUMEN

Avian pathogenic Escherichia coli (APEC) is a serious systemic infectious disease in poultry infections, causing severe economic losses to the poultry industry. Previous studies have shown that secretion of virulence proteins was required for the pathogenicity of APEC through the secretion system. Outer membrane vesicles (OMVs) are a generalized secretion system of Gram-negative bacteria that play a key role in the long-distance delivery of virulence factors, but whether they are associated with the pathogenic mechanism of APEC has not been determined. In this study, OMVs were purified and characterized from AE17 (O2 serotype) by ultracentrifugation and density gradient centrifugation and their protein cargo was identified using liquid chromatography-tandem mass spectrometry (LC-MS/MS). In addition, 89Zr was labeled after chelating AE17 OMVs by DFO and positron emission tomography PET imaging was used to track 89Zr-DFO-OMVs in chickens and to pathologically analyze the distribution sites. This study showed that AE17 OMVs were membrane vesicles ranging in size from 20 to 200 nm and proteomic analysis revealed the presence of virulence proteins, including adhesion proteins OmpA, OmpC, OmpF, OmpX, FimH, FimC and FigE, and serum resistance proteins OmpT and MliC and immune response regulator proteins (FliC). In addition, in vivo PET imaging to track the biodistribution of AE17 OMVs showed that AE17 OMVs were taken up by the lung region and the gastrointestinal and renal regions but were not detected in other areas. Pathological analysis of the tissue sites where AE17 OMVs were ingested showed inflammatory responses and damage. These findings suggested that AE17 OMVs not only contained a group of virulence proteins associated with AE17 infection but can also deliver these virulence proteins over long distances and caused tissue inflammatory damage. Our study revealed a previously unidentified causative microbial signal in the pathogenesis of APEC that could aid in the development of vaccines and antibiotics effective against APEC.


Asunto(s)
Infecciones por Escherichia coli , Proteínas de Escherichia coli , Enfermedades de las Aves de Corral , Animales , Escherichia coli/fisiología , Pollos/metabolismo , Distribución Tisular , Infecciones por Escherichia coli/veterinaria , Infecciones por Escherichia coli/microbiología , Cromatografía Liquida/veterinaria , Proteómica , Espectrometría de Masas en Tándem/veterinaria , Factores de Virulencia/metabolismo , Proteínas de Escherichia coli/metabolismo , Enfermedades de las Aves de Corral/diagnóstico por imagen , Enfermedades de las Aves de Corral/microbiología
13.
Poult Sci ; 102(2): 102388, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36586294

RESUMEN

EnvZ, the histidine kinase (HK) of OmpR/EnvZ, transduces osmotic signals in Escherichia coli K12 and affects the pathogenicity of Shigella flexneri and Vibrio cholera. Avian pathogenic E. coli (APEC) is an extra-intestinal pathogenic E. coli (ExPEC), causing acute and sudden death in poultry and leading to severe economic losses to the global poultry industry. How the functions of EnvZ correlate with APEC pathogenicity was still unknown. In this study, we successfully constructed the envZ mutant strain AE17ΔenvZ and the inactivation of envZ significantly reduced biofilms and altered red, dry, and rough (rdar) morphology. In addition, AE17ΔenvZ was significantly less resistant to acid, alkali, osmotic, and oxidative stress conditions. Deletion of envZ significantly enhanced sensitivity to specific pathogen-free (SPF) chicken serum and increased adhesion to chicken embryonic fibroblast DF-1 cells and elevated inflammatory cytokine IL-1ß, IL6, and IL8 expression levels. Also, when compared with the WT strain, AE17ΔenvZ attenuated APEC pathogenicity in chickens. To explore the molecular mechanisms underpinning envZ in APEC17, we compared the WT and envZ-deletion strains using transcriptome analyses. RNA-Seq results identified 711 differentially expressed genes (DEGs) in the envZ mutant strain and DEGs were mainly enriched in outer membrane proteins, stress response systems, and TCSs. Quantitative real-time reverse transcription PCR (RT-qPCR) showed that EnvZ influenced the expression of biofilms and stress responses genes, including ompC, ompT, mlrA, basR, hdeA, hdeB, adiY, and uspB. We provided compelling evidence showing EnvZ contributed to APEC pathogenicity by regulating biofilms and stress response expression.


Asunto(s)
Infecciones por Escherichia coli , Proteínas de Escherichia coli , Enfermedades de las Aves de Corral , Animales , Escherichia coli/fisiología , Histidina Quinasa/metabolismo , Virulencia , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Infecciones por Escherichia coli/veterinaria , Pollos/metabolismo , Biopelículas , Proteínas de la Membrana Bacteriana Externa/metabolismo , Complejos Multienzimáticos/metabolismo
14.
Res Vet Sci ; 153: 144-152, 2022 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-36375381

RESUMEN

Avian pathogenic Escherichia coli (APEC) causes persistent infection of poultry and multi-system diseases, which seriously endanger the development of the poultry industry. Biofilm allows bacteria to adapt to the natural environment and plays an important role in resistance to the external environment and the pathogenicity of APEC, but the mechanism of its formation and regulatory network have not been clarified. In this study, we used a Tn5 transposon random mutation library constructed with APEC and identified ydiF, a gene that has not previously been recognized in E. coli biofilm formation. To confirm that the ydiF gene really can regulate the formation of APEC biofilm, the ydiF gene deletion strain was constructed using APEC81. Protein association networks prediction results show that ydiF is mainly associated with genes related to the metabolism of sugars and fatty acids. Deletion of the ydiF gene significantly reduces the formation of APEC biofilm and scanning electron microscopy indicated that the degree of adhesion between the bacteria was also reduced. The deletion of the ydiF gene also significantly reduced the motility of APEC81 and through transmission electron microscopy APEC81 was observed to have significantly fewer flagella. However, the colony morphology of APEC81 on Congo red and Coomassie brilliant blue media was unaffected. The results of fluorescence quantification showed that the deletion of the ydiF gene caused a down-regulation in the transcription of genes related to the second messenger, sugar metabolism, and quorum sensing. These results indicate that ydiF plays an important role in biofilm formation and the movement of APEC. In addition, it may be possible to regulate the formation of APEC biofilms by different methods such as by regulating the second messenger and metabolic system.

15.
Poult Sci ; 101(12): 102208, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36279605

RESUMEN

Fatal gout in geese caused by goose astrovirus (GAstV) has been spreading rapidly in China since 2018, causing serious economic losses in the goose breeding industry. To achieve simple, convenient and sensitive detection of GAstV, a novel diagnostic test was developed by combining reverse transcription-enzymatic recombinase amplification (RT-ERA) and CRISPR-Cas12a technologies. RT-ERA primers were designed to pre-amplify the conserved region of the ORF2 gene of GAstV and the predefined target sequence detected using the Cas12a/crRNA complex at 37℃ for 30 min. Specific detection of GAstV was achieved with no cross-reaction with non-GAstV templates and a sensitivity detection limit of 2 copies. The experimental procedure could be completed within 1 h, including RNA extraction (15 min), RT-ERA reaction (20 min), CRISPR-Cas12a/crRNA detection (5 min) and result readout (within 2 min) steps. In conclusion, the combination of RT-ETA and CRISPR-Cas12a provides a rapid and specific method that should be effective for the control and surveillance of GAstV infections in farms from remote locations.


Asunto(s)
Avastrovirus , Transcripción Reversa , Animales , Recombinasas , Gansos/genética , Sistemas CRISPR-Cas , Pollos , Avastrovirus/genética
16.
BMC Vet Res ; 18(1): 344, 2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-36100853

RESUMEN

BACKGROUND: Bacteria deliver effector proteins into the host cell via a secretory system that can directly act on the target to cause disease. As an important pipeline structural protein of the type VI secretion system (T6SS) complex, Hcp acts together with other virulence factors in the target cell. There is growing evidence that T6SS plays a key role in the pathogenic mechanism of APEC. However, the regulatory function played by the effector protein Hcp during its interaction with host cells is not clear. Here, tandem mass tag (TMT) analysis was used to quantify the proteins affected by increased expression of Hcp2a in DF-1 cells. RESULTS: The host response was significantly different between the overexpression and null groups at the protein level. A total of 195 differentially expressed proteins (DEPs) were detected in the overexpression group (upregulated, n = 144, downregulated, n = 51). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to predict the biological functions and pathways of differentially expressed proteins. The results showed that these DEPs were mainly enriched in RNA degradation, spliceosome, and mRNA surveillance pathways. CONCLUSIONS: This study suggests that Hcp2a, the effector protein of APEC, plays an important role in regulating mRNA splicing and protein quality control in DF-1 cells. These findings provide useful clues to elucidate the pathogenic mechanism of effector protein Hcp2a on host target cells.


Asunto(s)
Factores de Virulencia , Animales , Ontología de Genes , ARN Mensajero/genética , ARN Mensajero/metabolismo
17.
Front Vet Sci ; 9: 949172, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35968022

RESUMEN

Porcine circovirus type 4 (PCV4) is a newly emerging pathogen that was first detected in 2019 and is associated with diverse clinical signs, including respiratory and gastrointestinal distress, dermatitis and various systemic inflammations. It was necessary to develop a sensitive and specific diagnostic method to detect PCV4 in clinical samples, so in this study, a multienzyme isothermal rapid amplification (MIRA) assay was developed for the rapid detection of PCV4 and evaluated for sensitivity, specificity and applicability. It was used to detect the conserved Cap gene of PCV4, operated at 41°C and completed in 20 min. With the screening of MIRA primer-probe combination, it could detect as low as 101 copies of PCV4 DNA per reaction and was highly specific, with no cross-reaction with other pathogens. Further assessment with clinical samples showed that the developed MIRA assay had good correlation with real-time polymerase chain reaction assay for the detection of PCV4. The developed MIRA assay will be a valuable tool for the detection of the novel PCV4 in clinical samples due to its high sensitivity and specificity, simplicity of operation and short testing time.

18.
Res Vet Sci ; 152: 10-19, 2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-35901637

RESUMEN

Avian pathogenic Escherichia coli (APEC) can cause the acute and sudden death of poultry, which leads to serious economic losses in the poultry industry. Biofilm formation contributes to the persistence of bacterial infection, drug resistance, and resistance to diverse environmental stress. Many transcription regulators in APEC play an essential role in the formation of biofilm and could provide further insights into APEC pathogenesis. YjjQ has an important role in the pathogenicity of bacteria by regulating the expression of virulence factors, such as flagellar and iron uptake. However, YjjQ regulates other virulence factors, and their role in the overall regulatory network is unclear. Here, we further evaluate the function of YjjQ on APEC biofilm formation and motility. In this study, we successfully constructed mutant (AE27∆yjjQ) and complement (AE27ΔyjjQ-comp) strains of the wild-type strain AE27. Inactivation of the yjjQ gene significantly increased biofilm-forming ability in APEC. Scanning electron microscopy showed that the biofilm formation of the AE27 was single-layered and flat, whereas that of the AE27∆yjjQ had a porous three-dimensional structure. Moreover, the deletion of the yjjQ gene inhibited the motility of APEC. RNA-sequencing was used to further investigate the regulatory mechanism of YjjQ in APEC. The results indicate that YjjQ regulates biofilm formation and flagellar genes in AE27∆yjjQ. RT-qPCR shows that YjjQ affects the transcriptional levels of genes, including flagella genes (flhD, flhC and flgE), and biofilm formation genes (pstA, uhpC, nikD, and ygcS). These results confirm that the transcription regulator YjjQ is involved in APEC biofilm formation and motility, and provide new evidence for the prevention and control of APEC.


Asunto(s)
Infecciones por Escherichia coli , Proteínas de Escherichia coli , Enfermedades de las Aves de Corral , Animales , Biopelículas , Pollos/metabolismo , Escherichia coli/fisiología , Infecciones por Escherichia coli/veterinaria , Infecciones por Escherichia coli/microbiología , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Enfermedades de las Aves de Corral/microbiología , Transactivadores/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factores de Virulencia/genética
19.
Front Cell Infect Microbiol ; 12: 879887, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35646725

RESUMEN

Porcine parvovirus (PPV) is one of the important causes of pig reproductive diseases. The most prevalent methods for PPV authentication are the polymerase chain reaction (PCR), enzyme-linked immunosorbent assay, and quantitative real-time PCR. However, these procedures have downsides, such as the fact that they take a long time and require expensive equipment. As a result, a rapid, visible, and economical clinical diagnostic strategy to detect PPV is necessary. In this study, three pairs of crRNA primers were designed to recognize the VP2 gene, and an ERA-CRISPR/Cas12a system for PPV detection was successfully developed. The approach involved isothermal detection at 37°C, and the method can be used for visual inspection. The detection limit of the ERA-CRISPR/Cas12a system was 3.75 × 102 copies/µL, and no cross reactions with other porcine viruses were found. In view of the preceding, a rapid, visible, and low-cost nucleic acid testing approach for PPV has been developed using the ERA-CRISPR/Cas12a system.


Asunto(s)
Parvovirus Porcino , Enfermedades de los Porcinos , Animales , Sistemas CRISPR-Cas , Parvovirus Porcino/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Sensibilidad y Especificidad , Porcinos , Enfermedades de los Porcinos/genética
20.
World J Microbiol Biotechnol ; 38(8): 130, 2022 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-35688968

RESUMEN

Avian pathogenic Escherichia coli (APEC) is the main pathogens that inflict the poultry industry. Biofilm as the pathogenic factors of APEC, which can enhance the anti-host immune system of APEC and improve its survival in the environment. In order to screen for new genes related to APEC biofilm. The APEC strain APEC81 was used to construct a mutant library by Tn5 insertion mutagenesis. Moreover the 28 mutant strains with severely weakened biofilm were successfully screened from 1500 mutant strains by crystal violet staining, in which 17 genes were obtained by high-efficiency thermal asymmetric interlaced PCR. The reported genes include 3 flagella genes (fliS, fliD, and fliR), 4 curli fimbriae genes (csgD, csgA, csgF, and csgG) and 3 type 1 fimbriae genes (fimA, fimD, and fimC). The novel genes include 3 coenzyme genes (gltA, bglX, and mltF) and 4 putative protein genes (yehE, 07045, 11735, 11255). To investigate whether these 17 genes co-regulate the biofilm, the 17 identified genes were deleted from APEC strain APEC81. The results showed that except for the 11735 and 11255 genes, the deletion of 15 genes significantly reduced the biofilm formation ability of APEC81 (P < 0.05). The result of rdar (red, dry and rough) colony morphology showed that curli fimbriae genes (csgD, csgA, csgF, and csgG) and other functional genes (fimC, glxK, yehE, 07045, and 11255) affected the colony morphology. In particular, the hypothetical protein YehE had the greatest influence on the biofilm. It was predicted to have the same structure as the type 1 fimbria protein. When yehE was deleted, the fimE transcription was up-regulated, and the fimA and fimB transcription were down-regulated, resulting in a decrease in type 1 fimbriae. Hence, the yehE mutant significantly reduced the biofilm and the adhesion and invasion ability to cells (P < 0.05). This study identified 5 novel genes (gltA, bglX, mltF, yehE, and 07045) related to biofilm formation and confirmed that yehE affects biofilm formation by type 1 fimbriae, which will benefit further study of the mechanism of biofilm regulation in APEC.


Asunto(s)
Infecciones por Escherichia coli , Proteínas de Escherichia coli , Enfermedades de las Aves de Corral , Transposasas/metabolismo , Animales , Biopelículas , Pollos , Proteínas de Unión al ADN , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas Fimbrias/genética , Integrasas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA