Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Vet Res ; 55(1): 54, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38671518

RESUMEN

This article reviews the avian viruses that infect the skin of domestic farm birds of primary economic importance: chicken, duck, turkey, and goose. Many avian viruses (e.g., poxviruses, herpesviruses, Influenza viruses, retroviruses) leading to pathologies infect the skin and the appendages of these birds. Some of these viruses (e.g., Marek's disease virus, avian influenza viruses) have had and/or still have a devasting impact on the poultry economy. The skin tropism of these viruses is key to the pathology and virus life cycle, in particular for virus entry, shedding, and/or transmission. In addition, for some emergent arboviruses, such as flaviviruses, the skin is often the entry gate of the virus after mosquito bites, whether or not the host develops symptoms (e.g., West Nile virus). Various avian skin models, from primary cells to three-dimensional models, are currently available to better understand virus-skin interactions (such as replication, pathogenesis, cell response, and co-infection). These models may be key to finding solutions to prevent or halt viral infection in poultry.


Asunto(s)
Enfermedades de las Aves de Corral , Virosis , Animales , Aves de Corral/virología , Enfermedades de las Aves de Corral/virología , Piel/virología , Virosis/veterinaria , Virosis/virología
2.
PLoS One ; 17(10): e0271448, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36206252

RESUMEN

Protocols allowing the in vitro culture of human hair follicles in a serum free-medium up to 9 days were developed 30 years ago. By using similar protocols, we achieved the prolonged maintenance in vitro of juvenile feather follicles (FF) microdissected from young chickens. Histology showed a preservation of the FF up to 7 days as well as feather morphology compatible with growth and/or differentiation. The integrity of the FF wall epithelium was confirmed by transmission electron microscopy at Day 5 and 7 of culture. A slight elongation of the feathers was detected up to 5 days for 75% of the examined feathers. By immunochemistry, we demonstrated the maintenance of expression and localization of two structural proteins: scaffoldin and fibronectin. Gene expression (assessed by qRT-PCR) of NCAM, LCAM, Wnt6, Notch1, and BMP4 was not altered. In contrast, Shh and HBS1 expression collapsed, DKK3 increased, and KRT14 transiently increased upon cultivation. This indicates that cultivation modifies the mRNA expression of a few genes, possibly due to reduced growth or cell differentiation in the feather, notably in the barb ridges. In conclusion, we have developed the first method that allows the culture and maintenance of chicken FF in vitro that preserves the structure and biology of the FF close to its in vivo state, despite transcriptional modifications of a few genes involved in feather development. This new culture model may serve to study feather interactions with pathogens or toxics and constitutes a way to reduce animal experimentation.


Asunto(s)
Pollos , Plumas , Animales , Evolución Biológica , Pollos/genética , Plumas/metabolismo , Fibronectinas/metabolismo , Folículo Piloso , Humanos , Morfogénesis , Moléculas de Adhesión de Célula Nerviosa/metabolismo , ARN Mensajero/genética
3.
PLoS Pathog ; 18(8): e1010745, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-36037230

RESUMEN

In vivo bioluminescence imaging facilitates the non-invasive visualization of biological processes in living animals. This system has been used to track virus infections mostly in mice and ferrets; however, until now this approach has not been applied to pathogens in avian species. To visualize the infection of an important avian pathogen, we generated Marek's disease virus (MDV) recombinants expressing firefly luciferase during lytic replication. Upon characterization of the recombinant viruses in vitro, chickens were infected and the infection visualized in live animals over the course of 14 days. The luminescence signal was consistent with the known spatiotemporal kinetics of infection and the life cycle of MDV, and correlated well with the viral load measured by qPCR. Intriguingly, this in vivo bioimaging approach revealed two novel sites of MDV replication, the beak and the skin of the feet covered in scales. Feet skin infection was confirmed using a complementary fluorescence bioimaging approach with MDV recombinants expressing mRFP or GFP. Infection was detected in the intermediate epidermal layers of the feet skin that was also shown to produce infectious virus, regardless of the animals' age at and the route of infection. Taken together, this study highlights the value of in vivo whole body bioimaging in avian species by identifying previously overlooked sites of replication and shedding of MDV in the chicken host.


Asunto(s)
Herpesviridae , Herpesvirus Gallináceo 2 , Enfermedad de Marek , Animales , Pollos , Hurones , Ratones
4.
Vet Res ; 52(1): 21, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33588939

RESUMEN

The skin is a passive and active barrier which protects the body from the environment. Its health is essential for the accomplishment of this role. Since several decades, the skin has aroused a strong interest in various fields (for e.g. cell biology, medicine, toxicology, cosmetology, and pharmacology). In contrast to other organs, 3D models were mostly and directly elaborated in humans due to its architectural simplicity and easy accessibility. The development of these models benefited from the societal pressure to reduce animal experiments. In this review, we first describe human and mouse skin structure and the major differences with other mammals and birds. Next, we describe the different 3D human skin models and their main applications. Finally, we review the available models for domestic animals and discuss the current and potential applications.


Asunto(s)
Animales Domésticos/anatomía & histología , Modelos Biológicos , Piel/anatomía & histología , Animales , Aves/anatomía & histología , Imagenología Tridimensional/veterinaria , Mamíferos/anatomía & histología
5.
Res Vet Sci ; 132: 194-201, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32619800

RESUMEN

Mucosa are the routes of entry of most pathogens into animals' organisms. Reducing the important global burden of mucosal infectious diseases in livestock animals is required in the field of veterinary public health. For veterinary respiratory pathogens, one possible strategy is the development of intranasal (IN) DNA vaccination. The aim of this study was to assess the feasibility of IN DNA vaccination in pigs, an important species in livestock production industry, and a source of zoonotic diseases. To achieve this goal, we used a DNA vaccine against pseudorabies virus (PrV) encoding the immunogenic glycoprotein B (pcDNA3-gB plasmid). When pigs were inoculated with the naked DNA vaccine through the IN route, PrV-specific IgG and IgA type antibodies were detected in porcine sera. Interestingly, mucosal salivary IgA antibodies against PrV were also detected, at similar levels to those measured following intramuscular injection (positive controls). Furthermore, the IN delivery of pcDNA3-gB combined with PLGA-PEI nanoparticles resulted in similar levels of antibodies but was associated with an increase in the duration of detection of mucosal IgA for 2 out of 3 pigs. Our results suggest that there is room to improve the efficacy of IN DNA vaccination in pigs through optimization of IN inoculations, for example by using nanoparticles such as PLGA-PEI. Further studies will be dedicated to optimizing and testing the protective potential of IN DNA vaccination procedures against PrV.


Asunto(s)
Administración Intranasal/veterinaria , Anticuerpos Antivirales/inmunología , Seudorrabia/prevención & control , Enfermedades de los Porcinos/prevención & control , Vacunación/veterinaria , Vacunas de ADN/administración & dosificación , Vacunas Virales/administración & dosificación , Administración Intranasal/métodos , Animales , Estudios de Factibilidad , Herpesvirus Suido 1/efectos de los fármacos , Nanopartículas/administración & dosificación , Seudorrabia/virología , Sus scrofa , Porcinos , Enfermedades de los Porcinos/virología , Vacunas de ADN/clasificación , Vacunas Virales/clasificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA