Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Mol Ther ; 21(1): 228-39, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23183535

RESUMEN

Nuclear reprogramming of adult somatic tissue enables embryo-independent generation of autologous, patient-specific induced pluripotent stem (iPS) cells. Exploiting this emergent regenerative platform for individualized medicine applications requires the establishment of bioequivalence criteria across derived pluripotent lines and lineage-specified derivatives. Here, from individual patients with type 1 diabetes (T1D) multiple human iPS clones were produced and prospectively screened using a battery of developmental markers to assess respective differentiation propensity and proficiency in yielding functional insulin (INS)-producing progeny. Global gene expression profiles, pluripotency expression patterns, and the capacity to differentiate into SOX17- and FOXA2-positive definitive endoderm (DE)-like cells were comparable among individual iPS clones. However, notable intrapatient variation was evident upon further guided differentiation into HNF4α- and HNF1ß-expressing primitive gut tube, and INS- and glucagon (GCG)-expressing islet-like cells. Differential dynamics of pluripotency-associated genes and pancreatic lineage-specifying genes underlined clonal variance. Successful generation of glucose-responsive INS-producing cells required silencing of stemness programs as well as the induction of stage-specific pancreatic transcription factors. Thus, comprehensive fingerprinting of individual clones is mandatory to secure homogenous pools amenable for diagnostic and therapeutic applications of iPS cells from patients with T1D.


Asunto(s)
Diferenciación Celular , Diabetes Mellitus Tipo 1/patología , Insulina/biosíntesis , Linaje de la Célula , Diabetes Mellitus Tipo 1/metabolismo , Perfilación de la Expresión Génica , Vectores Genéticos , Humanos , Cariotipificación , Análisis de Secuencia por Matrices de Oligonucleótidos , Páncreas/metabolismo , Páncreas/patología , Reacción en Cadena de la Polimerasa , Células Madre/metabolismo , Células Madre/patología
2.
Aging (Albany NY) ; 4(1): 60-73, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22308265

RESUMEN

Nuclear reprogramming enables patient-specific derivation of induced pluripotent stem (iPS) cells from adult tissue. Yet, iPS generation from patients with type 2 diabetes (T2D) has not been demonstrated. Here, we report reproducible iPS derivation of epidermal keratinocytes (HK) from elderly T2D patients. Transduced with human OCT4, SOX2, KLF4 and c-MYC stemness factors under serum-free and feeder-free conditions, reprogrammed cells underwent dedifferentiation with mitochondrial restructuring, induction of endogenous pluripotency genes - including NANOG, LIN28, and TERT, and down-regulation of cytoskeletal, MHC class I- and apoptosis-related genes. Notably, derived iPS clones acquired a rejuvenated state, characterized by elongated telomeres and suppressed senescence-related p15INK4b/p16INK4a gene expression and oxidative stress signaling. Stepwise guidance with lineage-specifying factors, including Indolactam V and GLP-1, redifferentiated HK-derived iPS clones into insulin-producing islet-like progeny. Thus, in elderly T2D patients, reprogramming of keratinocytes ensures a senescence-privileged status yielding iPS cells proficient for regenerative applications.


Asunto(s)
Envejecimiento/genética , Diabetes Mellitus Tipo 2/metabolismo , Regulación de la Expresión Génica/fisiología , Queratinocitos/citología , Queratinocitos/fisiología , Células Madre Pluripotentes/metabolismo , Anciano , Técnicas de Cultivo de Célula , Perfilación de la Expresión Génica , Genoma , Humanos , Insulina/metabolismo , Factor 4 Similar a Kruppel , Persona de Mediana Edad , Mitocondrias/metabolismo , Estrés Oxidativo , Transducción de Señal
3.
Retrovirology ; 8: 23, 2011 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-21447170

RESUMEN

BACKGROUND: Xenotropic murine leukemia virus (MLV)-related virus (XMRV) was initially identified in prostate cancer (PCa) tissue, particularly in the prostatic stromal fibroblasts, of patients homozygous for the RNASEL R462Q mutation. A subsequent study reported XMRV antigens in malignant prostatic epithelium and association of XMRV infection with PCa, especially higher-grade tumors, independently of the RNASEL polymorphism. Further studies showed high prevalence of XMRV or related MLV sequences in chronic fatigue syndrome patients (CFS), while others found no, or low, prevalence of XMRV in a variety of diseases including PCa or CFS. Thus, the etiological link between XMRV and human disease remains elusive. To address the association between XMRV infection and PCa, we have tested prostate tissues and human sera for the presence of viral DNA, viral antigens and anti-XMRV antibodies. RESULTS: Real-time PCR analysis of 110 PCa (Gleason scores >4) and 40 benign and normal prostate tissues identified six positive samples (5 PCa and 1 non-PCa). No statistical link was observed between the presence of proviral DNA and PCa, PCa grades, and the RNASEL R462Q mutation. The amplified viral sequences were distantly related to XMRV, but nearly identical to endogenous MLV sequences in mice. The PCR positive samples were also positive for mouse mitochondrial DNA by nested PCR, suggesting contamination of the samples with mouse DNA. Immuno-histochemistry (IHC) with an anti-XMRV antibody, but not an anti-MLV antibody that recognizes XMRV, sporadically identified antigen-positive cells in prostatic epithelium, irrespectively of the status of viral DNA detection. No serum (159 PCa and 201 age-matched controls) showed strong neutralization of XMRV infection at 1:10 dilution. CONCLUSION: The lack of XMRV sequences or strong anti-XMRV neutralizing antibodies indicates no or very low prevalence of XMRV in our cohorts. We conclude that real-time PCR- and IHC-positive samples were due to laboratory contamination and non-specific immune reactions, respectively.


Asunto(s)
Neoplasias de la Próstata/virología , Virus Relacionado con el Virus Xenotrópico de la Leucemia Murina/aislamiento & purificación , Anciano , Animales , Antígenos Virales/sangre , Estudios de Casos y Controles , Línea Celular , Estudios de Cohortes , Endorribonucleasas/genética , Humanos , Masculino , Ratones , Persona de Mediana Edad , Medio Oeste de Estados Unidos , Datos de Secuencia Molecular , Mutación , Filogenia , Próstata/virología , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/inmunología , Virus Relacionado con el Virus Xenotrópico de la Leucemia Murina/clasificación , Virus Relacionado con el Virus Xenotrópico de la Leucemia Murina/genética , Virus Relacionado con el Virus Xenotrópico de la Leucemia Murina/inmunología
4.
J Virol ; 85(3): 1205-13, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21084477

RESUMEN

A novel gammaretrovirus, xenotropic murine leukemia virus-related virus (XMRV), has been identified in patients with prostate cancer and in patients with chronic fatigue syndromes. Standard Mus musculus laboratory mice lack a functional XPR1 receptor for XMRV and are therefore not a suitable model for the virus. In contrast, Gairdner's shrew-mice (Mus pahari) do express functional XPR1. To determine whether Mus pahari could serve as a model for XMRV, primary Mus pahari fibroblasts and mice were infected with cell-free XMRV. Infection of cells in vitro resulted in XMRV Gag expression and the production of XMRV virions. After intraperitoneal injection of XMRV into Mus pahari mice, XMRV proviral DNA could be detected in spleen, blood, and brain. Intravenous administration of a green fluorescent protein (GFP) vector pseudotyped with XMRV produced GFP(+) CD4(+) T cells and CD19(+) B cells. Mice mounted adaptive immune responses against XMRV, as evidenced by the production of neutralizing and Env- and Gag-specific antibodies. Prominent G-to-A hypermutations were also found in viral genomes isolated from the spleen, suggesting intracellular restriction of XMRV infection by APOBEC3 in vivo. These data demonstrate infection of Mus pahari by XMRV, potential cell tropism of the virus, and immunological and intracellular restriction of virus infection in vivo. These data support the use of Mus pahari as a model for XMRV pathogenesis and as a platform for vaccine and drug development against this potential human pathogen.


Asunto(s)
Modelos Animales de Enfermedad , Gammaretrovirus/patogenicidad , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores Virales/genética , Receptores Virales/metabolismo , Infecciones por Retroviridae/virología , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Antígenos CD19/análisis , Linfocitos B/química , Linfocitos B/virología , Sangre/virología , Encéfalo/virología , Linfocitos T CD4-Positivos/virología , Células Cultivadas , Fibroblastos/virología , Gammaretrovirus/inmunología , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Ratones , Infecciones por Retroviridae/inmunología , Infecciones por Retroviridae/patología , Bazo/virología , Coloración y Etiquetado/métodos , Tropismo Viral , Receptor de Retrovirus Xenotrópico y Politrópico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA