Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
J Proteomics ; 292: 105056, 2024 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-38043863

RESUMEN

Colletotrichum falcatum is the causal organism of red rot, the most devastating disease of sugarcane. Mitogen-activated protein kinase (MAPK) signaling pathway plays pivotal role in coordinating the process of pathogenesis. We identified eighteen proteins implicated in MAPK signaling pathway in C. falcatum, through nanoLCMS/MS based proteomics approach. Twelve of these proteins were the part of core MAPK signaling pathway, whereas remaining proteins were indirectly implicated in MAPK signaling. Majority of these proteins had enhanced abundance in C. falcatum samples cultured with host sugarcane stalks. To validate the findings, core MAPK pathway genes (MAPKKK-NSY1, MAPK 17-MAPK17, MAPKKK 5-MAPKKK5, MAPK-HOG1B, MAPKKK-MCK1/STE11, MAPK-MST50/STE50, MAPKK-SEK1, MAPKK-MEK1/MST7/STE7, MAPKK-MKK2/STE7, MAPKKK-MST11/STE11, MAPK 5-MPK5, and MAPK-MPK-C) were analyzed by qPCR to confirm the real-time expression in C. falcatum samples cultured with host sugarcane stalks. The results of qPCR-based expression of genes were largely in agreement with the findings of proteomics. String association networks of MAPKK- MEK1/MST7/STE7, and MAPK- MPK-C revealed strong association with plenty of assorted proteins implicated in the process of pathogenesis/virulence. This is the novel and first large scale study of MAPK proteins in C. falcatum, responsible for red rot epidemics of sugarcane various countries. KEY MESSAGE: Our findings demonstrate the pivotal role of MAPK proteins in orchestrating the pathogenicity of Colletotrichum falcatum, responsible devastating red rot disease of sugarcane. SIGNIFICANCE: Our findings are novel and the first large scale study demonstrating the pivotal role of MAPK proteins in C. falcatum, responsible devastating red rot disease of sugarcane. The study will be useful for future researchers in terms of manipulating the fungal pathogenicity through genome editing.


Asunto(s)
Quinasas de Proteína Quinasa Activadas por Mitógenos , Proteínas Quinasas Activadas por Mitógenos , Virulencia , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Transducción de Señal , Quinasas Quinasa Quinasa PAM/metabolismo
2.
Front Plant Sci ; 14: 1225234, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37645467

RESUMEN

Sugarcane productivity is being hampered globally under changing environmental scenarios like drought and salinity. The highly complex nature of the plant responses against these stresses is determined by a variety of factors such as genotype, developmental phase of the plant, progression rate and stress, intensity, and duration. These factors influence plant responses and can determine whether mitigation approaches associated with acclimation are implemented. In this review, we attempt to summarize the effects of drought and salinity on sugarcane growth, specifically on the plant's responses at various levels, viz., physiological, biochemical, and metabolic responses, to these stresses. Furthermore, mitigation strategies for dealing with these stresses have been discussed. Despite sugarcane's complex genomes, conventional breeding approaches can be utilized in conjunction with molecular breeding and omics technologies to develop drought- and salinity-tolerant cultivars. The significant role of plant growth-promoting bacteria in sustaining sugarcane productivity under drought and salinity cannot be overlooked.

3.
3 Biotech ; 13(1): 24, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36573156

RESUMEN

Isoprene, a Natural Volatile Organic Compound (NVOC) is one of the chief by-products of plant metabolism with important applications in the synthesis of rubber and pharmaceuticals as a platform molecule. Isoprene was obtained earlier from petroleum sources; however, to synthesise it new fermentation-based strategies are being adopted. Bioinformatics tools were utilised to isolate the Isoprene Synthase (IspS) gene which converts the precursors Isopentenyl Diphosphate (IPP) and Dimethylallyl Diphosphate (DMAPP) into isoprene. Metabolic engineering strategies were to synthesise an isoprene-producing recombinant clone derived from Artocarpus heterophyllus (jackfruit). The functional characterization was done using the overexpression of the isoprene synthase gene in an Escherichia coli BL21 host. The recombinant clone, ISPS_GBL_001 (submitted to GenBank, National Centre for Biotechnology Information or NCBI) was used for fermentation in the batch and fed-batch mode to produce isoprene. Isoprene productivity of 0.08 g/g dextrose was obtained via the fed-batch mode maintaining the process parameters at optimum. The quantification and confirmation of isoprene was done using gas chromatography (GC) and GC-mass spectrometry (GC-MS) of the extracted sample, respectively. This study makes significant contribution to the ongoing research on bio-isoprene synthesis by highlighting a novel plant source of the IspS gene followed by, its successful expression in a recombinant host, validated by fermentation. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-022-03441-7.

4.
Cancers (Basel) ; 14(22)2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36428575

RESUMEN

In an attempt to find a potential cure for cancer, scientists have been probing the efficacy of the food we eat and its bioactive components. Over the decades, there has been an exponentially increasing trend of research correlating food and cancer. This review explains the molecular mechanisms by which bioactive food components exhibit anticancer effects in several cancer models. These bioactive compounds are mainly plant based or microbiome based. While plants remain the primary source of these phytochemicals, little is known about probiotics, i.e., microbiome sources, and their relationships with cancer. Thus, the molecular mechanisms underlying the anticancer effect of probiotics are discussed in this review. The principal mode of cell death for most food bioactives is found to be apoptosis. Principal oncogenic signaling axes such as Akt/PI3K, JAK/STAT, and NF-κB seem to be modulated due to these bioactives along with certain novel targets that provide a platform for further oncogenic research. It has been observed that probiotics have an immunomodulatory effect leading to their chemopreventive actions. Various foods exhibit better efficacy as complete extracts than their individual phytochemicals, indicating an orchestrated effect of the food components. Combining bioactive agents with available chemotherapies helps synergize the anticancer action of both to overcome drug resistance. Novel techniques to deliver bioactive agents enhance their therapeutic response. Such combinations and novel approaches are also discussed in this review. Notably, most of the food components that have been studied for cancer have shown their efficacy in vivo. This bolsters the claims of these studies and, thus, provides us with hope of discovering anticancer agents in the food that we eat.

5.
Sugar Tech ; 23(6): 1218-1234, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34248307

RESUMEN

Sugar beet is an important crop in the advent of COVID 19 as it has a high potential for ethanol production in less growth span. The life cycle of this crop is of five to six months with a root yield of 60-80 t ha-1 and sugar content of 15-17%. Sugar beet is known as a temperate crop of short duration grown in the month of September to October and harvested in April and May, but successful efforts have been made in establishing this crop for Indian agro-climatic conditions. India stands to gain from capitalizing on the potential of sugar beet for sugar, ethanol, and fodder. It offers the increment in the farmer's income especially hill farmers with respect to seed production of this crop in India The crop has been bestowed with a natural endowment of reclaiming saline soils which will help in cultivating the Indian saline areas. The crop is full of carbohydrates content which is being used for multiple purposes giving value addition to the crop. The green top and, wet and dry pulp are a good source of fodder material for lactating animals like cattle. Beet pulp is another good source as silage feed and as an adhesive in beauty products as well as in printing ink. An amount of 5250 L of ethanol per hectare crop can be produced. Due to 30% galacturonic acid content, the dry beet pulp can also be used as a source of Vitamin C. Lactic acid is also being produced from the juice of sugar beet through fermentation. The pectin content of this crop is useful in paper and board manufacturing industries as a raw material and also in dishwashing detergents and leather production. The fiber content works as dietary fibers which are used in meat and baking industries as important ingredients in food commodities. The vinasse produced as an industrial by-product is useful as a fertilizer. Sugar beet tails and other parts have also been used in biogas production in some countries. Intercropping of this crop with other crops is an added benefit of this crop. New prospects are also available for this crop in pharmaceutical industries and material sciences in times to come.

6.
Drug Dev Res ; 82(1): 68-85, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32783257

RESUMEN

An alarming increase in global death toll resulting from cancer incidents, particularly due to multidrug resistance and reduced efficacy as a consequence of target mutations, has compelled us to look for novel anticancer agents. Cancer stem cells (CSCs), contributing majorly to the chemoresistance and tumor relapse, seem to the main culprits. In the present investigation, new chemical entities (NCEs) belonging to four novel chemical series (A: 4'-allyl-2'-methoxyphenoxymethyl-1,2,3-triazoles; B: 4'-acetamidophenoxymethyl-1,2,3-triazoles; C: naphthalene-1'-yloxymethyl-1,2,3-triazoles, and D: naphthalene-2'-yloxymethyl-1,2,3-triazoles) were synthesized via Copper (I)-catalyzed alkyne-azide cycloaddition reaction and evaluated for in vitro anticancer activity. A total of 30 NCEs (39-68) were screened at 10 µM concentration in cell viability assay against cancer cell lines such as breast (MDA-MB-231), prostate (PC-3), glioma (U87 MG), along with cervical (SiHa) and lung (A549). The NCEs from Series C (56-60) and D (61-68) were more potent than those in Series A (39-45) and Series B (46-55) at the tested concentration. Furthermore, NCEs with >80% inhibition at 10 µM were evaluated for dose response. A total of five NCEs, 48, 56, 61, 65 and 66, were further assessed in soft-agar assay and found to be relatively potent (IC50 < 10 µM). Finally, the hits were screened in sphere assay to identify potential CSC inhibitors against mammospheres (MDA-MB-231) and prostatospheres (PC-3). More so, the hits were also evaluated to understand in vitro cytotoxicity against normal cells using mouse embryonic fibroblast cell line (NIH/3T3) and human peripheral blood mononuclear cells (hPBMCs). Overall, hits 56 and 61 exhibited potent anticancer as well as CSC inhibitory activities with notably less toxicity toward NIH/3T3 and hPBMCs. On the whole, our arduous study led to the identification of potential hits with anticancer and CSC inhibitory activities, with minimal or no toxicity to normal cells.


Asunto(s)
Antineoplásicos/síntesis química , Antineoplásicos/farmacología , Neoplasias/tratamiento farmacológico , Células Madre Neoplásicas/efectos de los fármacos , Triazoles/síntesis química , Triazoles/farmacología , Animales , Línea Celular , Supervivencia Celular/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Humanos , Leucocitos Mononucleares/efectos de los fármacos , Ratones
7.
Drug Dev Res ; 81(3): 356-365, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31800121

RESUMEN

Cancer kills, irrespective of geographical and cultural origin. Novel modalities for treating cancer are desperately needed. Cancer stem cells (CSCs), main culprits behind chemoresistance and tumor relapse, are one of the few logical choices. Herein, we report the synthesis and biological evaluation of small molecules with chloroacetamide war-head. These molecules were screened for viability against various breast, prostate, and oral cancer cell lines using MTT and soft-agar assays. Further, promising hits were screened in sphere-forming assay with the aim of discovering potential anti-CSC agents. Our optimism yielded four hits inhibiting self-renewal of cancer cells with stem-like characters in vitro. Finally, the hits were evaluated for in vitro toxicity against human peripheral blood mononuclear cells and mouse embryonic fibroblast cell line. Overall, these preliminary investigations yielded three hits exhibiting promising anti-CSC potential with little or no toxicity against normal cells.


Asunto(s)
Acetamidas/farmacología , Antineoplásicos/farmacología , Células Madre Neoplásicas/efectos de los fármacos , Acetamidas/síntesis química , Acetamidas/química , Animales , Antineoplásicos/síntesis química , Antineoplásicos/química , Neoplasias de la Mama/tratamiento farmacológico , Línea Celular , Línea Celular Tumoral , Femenino , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Humanos , Leucocitos Mononucleares/efectos de los fármacos , Masculino , Ratones , Neoplasias de la Boca/tratamiento farmacológico , Neoplasias de la Próstata/tratamiento farmacológico
8.
Int J Mol Sci ; 20(20)2019 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-31600949

RESUMEN

The use of synthetic, natural, or biological agents to minimize the occurrence of cancer in healthy individuals is defined as cancer chemoprevention. Chemopreventive agents inhibit the development of cancer either by impeding DNA damage, which leads to malignancy or by reversing or blocking the division of premalignant cells with DNA damage. The benefit of this approach has been demonstrated in clinical trials of breast, prostate, and colon cancer. The continuous increase in cancer cases, failure of conventional chemotherapies to control cancer, and excessive toxicity of chemotherapies clearly demand an alternative approach. The first trial to show benefit of chemoprevention was undertaken in breast cancer patients with the use of tamoxifen, which demonstrated a significant decrease in invasive breast cancer. The success of using chemopreventive agents for protecting the high risk populations from cancer indicates that the strategy is rational and promising. Dietary components such as capsaicin, cucurbitacin B, isoflavones, catechins, lycopenes, benzyl isothiocyanate, phenethyl isothiocyanate, and piperlongumine have demonstrated inhibitory effects on cancer cells indicating that they may serve as chemopreventive agents. In this review, we have addressed the mechanism of chemopreventive and anticancer effects of several natural agents.


Asunto(s)
Anticarcinógenos/química , Anticarcinógenos/farmacología , Quimioprevención , Neoplasias/prevención & control , Fitoquímicos/química , Fitoquímicos/farmacología , Animales , Humanos , Neoplasias/etiología , Relación Estructura-Actividad
9.
3 Biotech ; 9(2): 48, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30729072

RESUMEN

The idea of doubling the farmers' income in next 5 years has been slated by the Government of India. The specific target of increasing sugarcane farmers' income could be achieved by developing cost-effective technologies, transferring them from laboratory to land, educating the farmers and creating a linkage between all stakeholders. Consistent efforts shall be required to harness all possible sources for increasing farmer's income in and outside the agriculture sector with respect to improvement in sugarcane and sugar productivity, enhancement in resource use efficiency and adopting various other ways and means including intercropping, management of pests and diseases, use of biotechnological tools and minimizing post-harvest deterioration. The advances in sugarcane biotechnology could become remarkable in the coming years, both in terms of improving productivity as well as increasing the value and utility of this crop substantially. In future, genetically modified sugarcane varieties with increased resistance to different biotic and abiotic stresses would serve more towards sugarcane crop improvement. Any possibility of enhancement in the income of sugarcane farmers shall also be dependent upon the profitability and sustainability of the sugar industry. Integration of sugarcane production technologies for improvement in farm productivity, diversified sugarcane production system, reduced cost of cultivation along with increased processing plant efficiency and diversification to produce value added products shall ensure smooth and higher payment to the farmers. Development of low-cost technologies to convert "waste to resource" on a smaller scale shall also help the farmers to increase their income further. This paper focuses on possible measures to be taken up in each aspects of sugarcane cultivation including biotechnological approaches to achieve the goal of enhancing the income of sugarcane farmers substantially, particularly in the sub-tropical region of India.

10.
Semin Cancer Biol ; 50: 142-151, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-28774834

RESUMEN

It is now widely accepted that several gene alterations including transcription factors are critically involved in cancer progression and metastasis. Forkhead Box Class O proteins (FoxOs) including FoxO1/FKHR, FoxO3/FKHRL1, FoxO4/AFX and FoxO6 transcription factors are known to play key roles in proliferation, apoptosis, metastasis, cell metabolism, aging and cancer biology through their phosphorylation, ubiquitination, acetylation and methylation. Though FoxOs are proved to be mainly regulated by upstream phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3 K)/Akt signaling pathway, the role of FoxOs in cancer progression and metastasis still remains unclear so far. Thus, with previous experimental evidences, the present review discussed the role of FoxOs in association with metastasis related molecules including cannabinoid receptor 1 (CNR1), Cdc25A/Cdk2, Src, serum and glucocorticoid inducible kinases (SGKs), CXCR4, E-cadherin, annexin A8 (ANXA8), Zinc finger E-box-binding homeobox 2 (ZEB2), human epidermal growth factor receptor 2 (HER2) and mRNAs such as miR-182, miR-135b, miR-499-5p, miR-1274a, miR-150, miR-34b/c and miR-622, subsequently analyzed the molecular mechanism of some natural compounds targeting FoxOs and finally suggested future research directions in cancer progression and metastasis.


Asunto(s)
Factores de Transcripción Forkhead/genética , MicroARNs/genética , Proteínas de Neoplasias/genética , Neoplasias/genética , Proteínas de Ciclo Celular , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O3/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Metástasis de la Neoplasia , Neoplasias/patología , Factores de Transcripción/genética
11.
Plant Sci ; 235: 46-57, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25900565

RESUMEN

Among legumes, chickpea (Cicer arietinum L.) is the second most important crop after soybean. MicroRNAs (miRNAs) play important roles by regulating target gene expression important for plant development and tolerance to stress conditions. Additionally, recently discovered phased siRNAs (phasiRNAs), a new class of small RNAs, are abundantly produced in legumes. Nevertheless, little is known about these regulatory molecules in chickpea. The small RNA population was sequenced from leaves and flowers of chickpea to identify conserved and novel miRNAs as well as phasiRNAs/phasiRNA loci. Bioinformatics analysis revealed 157 miRNA loci for the 96 highly conserved and known miRNA homologs belonging to 38 miRNA families in chickpea. Furthermore, 20 novel miRNAs belonging to 17 miRNA families were identified. Sequence analysis revealed approximately 60 phasiRNA loci. Potential target genes likely to be regulated by these miRNAs were predicted and some were confirmed by modified 5' RACE assay. Predicted targets are mostly transcription factors that might be important for developmental processes, and others include superoxide dismutases, plantacyanin, laccases and F-box proteins that could participate in stress responses and protein degradation. Overall, this study provides an inventory of miRNA-target gene interactions for chickpea, useful for the comparative analysis of small RNAs among legumes.


Asunto(s)
Secuencia de Bases , Cicer/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , MicroARNs , ARN de Planta , ARN Interferente Pequeño , Biología Computacional , Secuencia Conservada , Proteínas F-Box/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Inflorescencia , Datos de Secuencia Molecular , Oxidorreductasas/genética , Hojas de la Planta , Proteínas de Plantas/genética , Estrés Fisiológico/genética , Factores de Transcripción/genética
12.
Gene ; 524(2): 309-29, 2013 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-23587912

RESUMEN

Sugarcane (Saccharum spp. hybrid) with complex polyploid genome requires a large number of informative DNA markers for various applications in genetics and breeding. Despite the great advances in genomic technology, it is observed in several crop species, especially in sugarcane, the availability of molecular tools such as microsatellite markers are limited. Now-a-days EST-SSR markers are preferred to genomic SSR (gSSR) as they represent only the functional part of the genome, which can be easily associated with desired trait. The present study was taken up with a new set of 351 EST-SSRs developed from the 4085 non redundant EST sequences of two Indian sugarcane cultivars. Among these EST-SSRs, TNR containing motifs were predominant with a frequency of 51.6%. Thirty percent EST-SSRs showed homology with annotated protein. A high frequency of SSRs was found in the 5'UTR and in the ORF (about 27%) and a low frequency was observed in the 3'UTR (about 8%). Two hundred twenty-seven EST-SSRs were evaluated, in sugarcane, allied genera of sugarcane and cereals, and 134 of these have revealed polymorphism with a range of PIC value 0.12 to 0.99. The cross transferability rate ranged from 87.0% to 93.4% in Saccharum complex, 80.0% to 87.0% in allied genera, and 76.0% to 80.0% in cereals. Cloning and sequencing of EST-SSR size variant amplicons revealed that the variation in the number of repeat-units was the main source of EST-SSR fragment polymorphism. When 124 sugarcane accessions were analyzed for population structure using model-based approach, seven genetically distinct groups or admixtures thereof were observed in sugarcane. Results of principal coordinate analysis or UPGMA to evaluate genetic relationships delineated also the 124 accessions into seven groups. Thus, a high level of polymorphism adequate genetic diversity and population structure assayed with the EST-SSR markers not only suggested their utility in various applications in genetics and genomics in sugarcane but also enriched the microsatellite marker resources in sugarcane.


Asunto(s)
Etiquetas de Secuencia Expresada , Variación Genética , Genoma de Planta , Saccharum/genética , Regiones no Traducidas 5' , Secuencia de Bases , Clonación Molecular , ADN de Plantas/genética , Frecuencia de los Genes , Marcadores Genéticos , Genotipo , Repeticiones de Microsatélite , Datos de Secuencia Molecular , Sistemas de Lectura Abierta , Saccharum/clasificación , Homología de Secuencia de Ácido Nucleico
13.
J Environ Biol ; 33(3): 657-61, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-23029918

RESUMEN

Seventy-one genotypes of sugarcane from diverse agro-climatic zones of India viz. peninsular, northwest, north-central and eastern zones, were screened for their tolerance to high temperature stress based on the damage to leaf biomass i.e. necrosis of leaf-tips and margins, and rolling of leaves. Nine selected genotypes showing variable response to heat injury were tested for activity pattern of isoforms of two H2O2-scavenging enzymes; ascorbate peroxidase (APX) and catalase (CAT), under high temperature induced oxidative stress. Changes in the activity of APX and CAT isozymes in leaves corresponded to the level of tolerance of genotypes towards heat injury which was substantiated by the highly negative correlation coefficients of heat injury levels of leaves vs. integrated density of APX and CAT isozyme bands. This indicated that the criteria of higher expression of CATs' andAPXs', the two major reactive oxygen species scavenging proteins in leaves may be used to screen large seedling populations and germplasm for high temperature tolerance.


Asunto(s)
Ascorbato Peroxidasas/metabolismo , Catalasa/metabolismo , Calor , Estrés Oxidativo , Saccharum/enzimología , Peróxido de Hidrógeno/metabolismo , India , Saccharum/genética
14.
J Environ Biol ; 32(6): 759-63, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22471213

RESUMEN

The potential of in-situ monitoring of cytotoxic effects of chromium through root-tip assay was studied in a sugarcane cultivar CoLk 8102 (Saccharum spp. hybrid). Sugarcane setts supplied with graded concentrations of chromium (VI), exhibited a reduction of 85.92 and 95.10 % in mean root length at 40 and 80 ppm Cr dosages along with 61.25 and 82.50% reduction in mean root number/node respectively. Mitotic index of root tip cells of treated setts declined and the frequency of aberrant mitotic phases increased pari passu to the increasing chromium concentration. To compare and quantify the effect of graded chromium dosages on frequency of chromosome aberrations vis-à-vis inhibition of mitotic activity, a 'Decretion factor' (D.F.) has been used for the first time. The value of DF increased with the increase in the chromium dosages. The increase in chromosome aberration frequency was low at low chromium dosages (1 or 2 ppm), but the high Cr dosages (40 and 80 ppm), induced sharp reduction in mitotic efficiency of root system along with anomalies in the process of cell division and induced chromosome aberrations in sugarcane root meristem, which in turn affected the over all plant growth.


Asunto(s)
Cromo/toxicidad , Metales Pesados/toxicidad , Saccharum/citología , Saccharum/efectos de los fármacos , Contaminantes del Suelo/toxicidad , Raíces de Plantas/citología , Raíces de Plantas/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA