Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Microbiology (Reading) ; 161(9): 1844-1856, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26297047

RESUMEN

It has repeatedly been shown that aryl-hydroxylating dioxygenases do not possess a very high substrate specificity. To gain more insight into this phenomenon, we examined two powerful biphenyl dioxygenases, the well-known wild-type enzyme from Burkholderia xenovorans LB400 (BphA-LB400) and a hybrid enzyme, based on a dioxygenase from Pseudomonas sp. B4-Magdeburg (BphA-B4h), for their abilities to dioxygenate a selection of eight biphenyl analogues in which the second aromatic ring was replaced by aliphatic as well as aliphatic/aromatic moieties, reflecting a variety of steric requirements. Interestingly, both enzymes were able to catalyse transformation of almost all of these compounds. While the products formed were identical, major differences were observed in transformation rates. In most cases, BphA-B4h proved to be a significantly more powerful catalyst than BphA-LB400. NMR characterization of the reaction products showed that the metabolite obtained from biphenylene underwent angular dioxygenation, whereas all other compounds were subject to lateral dioxygenation at ortho and meta carbons. Subsequent growth studies revealed that both dioxygenase source strains were able to utilize several of the biphenyl analogues as sole sources of carbon and energy. Therefore, prototype BphBCD enzymes of the biphenyl degradative pathway were examined for their ability to further catabolize the lateral dioxygenation products. All of the ortho- and meta-hydroxylated compounds were converted to acids, showing that this pathway is quite permissive, enabling catalysis of the turnover of a fairly wide variety of metabolites.


Asunto(s)
Bacterias Aerobias/metabolismo , Compuestos de Bifenilo/metabolismo , Redes y Vías Metabólicas , Bacterias Aerobias/genética , Bacterias Aerobias/crecimiento & desarrollo , Dioxigenasas/metabolismo , Cromatografía de Gases y Espectrometría de Masas , Hidrocarburos Aromáticos/metabolismo , Hidrólisis , Resonancia Magnética Nuclear Biomolecular , Oxidación-Reducción
2.
Appl Environ Microbiol ; 78(8): 2706-15, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22327590

RESUMEN

Total extracted DNA from two heavily polychlorobiphenyl-contaminated soils was analyzed with respect to biphenyl dioxygenase sequences and activities. This was done by PCR amplification and cloning of a DNA segment encoding the active site of the enzyme. The translated sequences obtained fell into three similarity clusters (I to III). Sequence identities were high within but moderate or low between the clusters. Members of clusters I and II showed high sequence similarities with well-known biphenyl dioxygenases. Cluster III showed low (43%) sequence identity with a biphenyl dioxygenase from Rhodococcus jostii RHA1. Amplicons from the three clusters were used to reconstitute and express complete biphenyl dioxygenase operons. In most cases, the resulting hybrid dioxygenases were detected in cell extracts of the recombinant hosts. At least 83% of these enzymes were catalytically active. Several amino acid exchanges were identified that critically affected activity. Chlorobiphenyl turnover by the enzymes containing the prototype sequences of clusters I and II was characterized with 10 congeners that were major, minor, or not constituents of the contaminated soils. No direct correlations were observed between on-site concentrations and rates of productive dioxygenations of these chlorobiphenyls. The prototype enzymes displayed markedly different substrate and product ranges. The cluster II dioxygenase possessed a broader substrate spectrum toward the assayed congeners, whereas the cluster I enzyme was superior in the attack of ortho-chlorinated aromatic rings. These results demonstrate the feasibility of the applied approach to functionally characterize dioxygenase activities of soil metagenomes via amplification of incomplete genes.


Asunto(s)
Dioxigenasas/genética , Dioxigenasas/metabolismo , Metagenoma , Bifenilos Policlorados/metabolismo , Microbiología del Suelo , Contaminantes del Suelo/metabolismo , Clonación Molecular , Análisis por Conglomerados , Datos de Secuencia Molecular , Filogenia , Reacción en Cadena de la Polimerasa , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido
3.
Structure ; 19(9): 1294-306, 2011 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-21893288

RESUMEN

Actin assembly beneath enterohemorrhagic E. coli (EHEC) attached to its host cell is triggered by the intracellular interaction of its translocated effector proteins Tir and EspF(U) with human IRSp53 family proteins and N-WASP. Here, we report the structure of the N-terminal I-BAR domain of IRSp53 in complex with a Tir-derived peptide, in which the homodimeric I-BAR domain binds two Tir molecules aligned in parallel. This arrangement provides a protein scaffold linking the bacterium to the host cell's actin polymerization machinery. The structure uncovers a specific peptide-binding site on the I-BAR surface, conserved between IRSp53 and IRTKS. The Tir Asn-Pro-Tyr (NPY) motif, essential for pedestal formation, is specifically recognized by this binding site. The site was confirmed by mutagenesis and in vivo-binding assays. It is possible that IRSp53 utilizes the NPY-binding site for additional interactions with as yet unknown partners within the host cell.


Asunto(s)
Escherichia coli O157 , Proteínas de Escherichia coli/química , Proteínas del Tejido Nervioso/química , Fragmentos de Péptidos/química , Receptores de Superficie Celular/química , Secuencias de Aminoácidos , Sustitución de Aminoácidos , Animales , Sitios de Unión , Células COS , Calorimetría , Chlorocebus aethiops , Cristalografía por Rayos X , Proteínas de Escherichia coli/genética , Interacciones Huésped-Patógeno , Humanos , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Inmunoprecipitación , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Fragmentos de Péptidos/genética , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Receptores de Superficie Celular/genética , Termodinámica
4.
Appl Environ Microbiol ; 73(8): 2682-9, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17322323

RESUMEN

Recently, a sequence-based approach has been developed for the fast isolation and characterization of class II aryl-hydroxylating dioxygenase activities (S. Kahl and B. Hofer, Microbiology 149:1475-1481, 2003). It comprises the PCR amplification of segments of alpha subunit genes of unknown sequence that encode the catalytic center and their fusion with sequences of the bphA gene cluster of Burkholderia xenovorans LB400. One of the resulting chimeric enzymes, harboring the core segment of a dioxygenase from Pseudomonas sp. strain B4-Magdeburg, has now been characterized with respect to the oxidation of chlorobiphenyls (CBs). Its substrate and product specificities differed favorably from those of the parental dioxygenase of strain LB400. The hybrid possessed a higher regiospecificity and yielded less unproductive dioxygenations at meta and para carbons. It attacked ortho-, meta-, and para-chlorinated rings with comparable efficiencies. It gave significantly higher yields in ortho,meta-dioxygenation of recalcitrant congeners containing a doubly ortho-chlorinated ring. While the parental enzyme yielded mainly unproductive meta, para dioxygenation of 2,5,4'-CB, the hybrid predominantly converted this congener into an ortho,meta-dioxygenated product. The subsequent enzymes of the LB400 catabolic pathway were able to transform most of the metabolites formed by the novel dioxygenase, indicating that the substrate ranges of these biocatalysts are not adapted to that of their initial pathway enzyme. Some of the catabolites, however, were identified as problematic for further degradation. Our results demonstrate that the outlined approach can successfully be applied to obtain novel dioxygenase specificities that favorably complement or supplement known ones.


Asunto(s)
Burkholderia/genética , Dioxigenasas/genética , Dioxigenasas/metabolismo , Bifenilos Policlorados/metabolismo , Ingeniería de Proteínas , Pseudomonas/genética , Biotransformación , Burkholderia/enzimología , Redes y Vías Metabólicas/genética , Redes y Vías Metabólicas/fisiología , Oxidación-Reducción , Pseudomonas/enzimología , Proteínas Recombinantes de Fusión/metabolismo , Especificidad por Sustrato
5.
Appl Environ Microbiol ; 72(3): 2191-9, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16517671

RESUMEN

Aryl-hydroxylating dioxygenases are of interest for the degradation of persistant aromatic pollutants, such as polychlorobiphenyls (PCBs), or as catalysts for the functionalization of aromatic scaffolds. In order to achieve dioxygenation of technical mixtures of PCBs, enzymes with broadened or altered substrate ranges are essential. To alter the substrate specificity of the biphenyl dioxygenase (BphA) of Burkholderia xenovorans LB400, we applied a directed evolution approach that used structure-function relationship data to target random mutageneses to specific segments of the enzyme. The limitation of random amino acid (AA) substitutions to regions that are critical for substrate binding and the exclusion of AA exchanges from positions that are essential for catalytic activity yielded enzyme variants of interest at comparatively high frequencies. After only a single mutagenic cycle, 10 beneficial variants were detected in a library of fewer than 1,000 active enzymes. Compared to the parental BphA, they showed between 5- and 200-fold increased turnover of chlorinated biphenyls, with substituent patterns that rendered them largely recalcitrant to attack by BphA-LB400. Determination of their sequences identified AAs that prevent the acceptance of specific PCBs by the wild-type enzyme, such as Pro334 and Phe384. The results suggest prime targets for subsequent cycles of BphA modification. Correlations with a three-dimensional model of the enzyme indicated that most of the exchanges with major influence on substrate turnover do not involve pocket-lining residues and had not been predictable through structural modeling.


Asunto(s)
Compuestos de Bifenilo/metabolismo , Burkholderia/enzimología , Dioxigenasas/química , Dioxigenasas/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Burkholderia/genética , Burkholderia/crecimiento & desarrollo , Dioxigenasas/genética , Evolución Molecular Dirigida , Datos de Secuencia Molecular , Mutagénesis , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA