Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Mol Biol Cell ; 11(4): 1345-56, 2000 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-10749934

RESUMEN

An evolutionarily ancient mechanism is used for intracellular membrane fusion events ranging from endoplasmic reticulum-Golgi traffic in yeast to synaptic vesicle exocytosis in the human brain. At the heart of this mechanism is the core complex of N-ethylmaleimide-sensitive fusion protein (NSF), soluble NSF attachment proteins (SNAPs), and SNAP receptors (SNAREs). Although these proteins are accepted as key players in vesicular traffic, their molecular mechanisms of action remain unclear. To illuminate important structure-function relationships in NSF, a screen for dominant negative mutants of yeast NSF (Sec18p) was undertaken. This involved random mutagenesis of a GAL1-regulated SEC18 yeast expression plasmid. Several dominant negative alleles were identified on the basis of galactose-inducible growth arrest, of which one, sec18-109, was characterized in detail. The sec18-109 phenotype (abnormal membrane trafficking through the biosynthetic pathway, accumulation of a membranous tubular network, growth suppression, increased cell density) is due to a single A-G substitution in SEC18 resulting in a missense mutation in Sec18p (Thr(394)-->Pro). Thr(394) is conserved in most AAA proteins and indeed forms part of the minimal AAA consensus sequence that serves as a signature of this large protein family. Analysis of recombinant Sec18-109p indicates that the mutation does not prevent hexamerization or interaction with yeast alpha-SNAP (Sec17p), but instead results in undetectable ATPase activity that cannot be stimulated by Sec17p. This suggests a role for the AAA protein consensus sequence in regulating ATP hydrolysis. Furthermore, this approach of screening for dominant negative mutants in yeast can be applied to other conserved proteins so as to highlight important functional domains in their mammalian counterparts.


Asunto(s)
Adenosina Trifosfatasas , Adenosina Trifosfato/metabolismo , Proteínas Fúngicas/genética , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Proteínas de Transporte Vesicular , Secuencia de Aminoácidos , Línea Celular , Secuencia de Consenso , Escherichia coli/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Humanos , Hidrólisis , Membranas Intracelulares/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis , Mutación Missense , Plásmidos , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Alineación de Secuencia
2.
Biochemistry ; 38(24): 7764-72, 1999 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-10387016

RESUMEN

The SEC18 gene product is 48% identical to mammalian NSF (N-ethylmaleimide-sensitive fusion protein), and both proteins encode cytoplasmic ATPases which are essential for membrane traffic in yeast and mammalian cells, respectively. A wealth of biochemical analysis has led to the description of a model for the action of NSF; through its interaction with SNAPs (soluble NSF attachment proteins), NSF can associate with SNAP receptors (SNAREs) on intracellular membranes, forming 20S complexes. SNAPs then stimulate the intrinsic ATPase activity of NSF, leading to the disassembly of the 20S complex, which is essential for subsequent membrane fusion. Although this model is based almost entirely on in vitro studies of the original clones of NSF and alpha-SNAP, it is nevertheless widely assumed that this mechanism of membrane fusion is conserved in all eukaryotic cells. If so, the crucial biochemical properties of NSF and SNAPs should be shared by their yeast homologues, Sec18p and Sec17p. Using purified recombinant proteins, we report here that Sec18p can specifically interact not only with Sec17p but also with its mammalian homologue, alpha-SNAP. This interaction leads to a stimulation of Sec18p D1 domain ATPase activity, with kinetics similar to those of alpha-SNAP stimulation of NSF, although differences in temperature and N-ethylmaleimide sensitivity were observed between NSF and Sec18p. Furthermore, Sec18p can interact with synaptic SNARE proteins and can synergize with alpha-SNAP to stimulate regulated exocytosis in mammalian cells. We conclude that the mechanistic properties of NSF and SNAPs are shared by Sec18p and Sec17p, thus demonstrating that the biochemistry of membrane fusion is conserved from yeast to mammals.


Asunto(s)
Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Fusión de Membrana , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/fisiología , Proteínas de Transporte Vesicular , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Animales , Proteínas Portadoras/química , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Etilmaleimida/química , Proteínas Fúngicas/genética , Fusión de Membrana/genética , Proteínas de la Membrana/metabolismo , Membranas/química , Membranas/metabolismo , Mutagénesis Sitio-Dirigida , Proteínas Sensibles a N-Etilmaleimida , Proteínas del Tejido Nervioso/metabolismo , Ratas , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Proteínas Ribosómicas/metabolismo , Proteínas SNARE , Saccharomyces cerevisiae/genética , Proteínas Solubles de Unión al Factor Sensible a la N-Etilmaleimida
3.
FEBS Lett ; 423(1): 113-6, 1998 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-9506852

RESUMEN

N-Ethylmaleimide-sensitive fusion protein (NSF) is required for most intracellular membrane fusion events. NSF is recruited to membranes by soluble NSF attachment proteins (SNAPs) and membrane-resident SNAP receptor (SNARE) proteins. The 20 S complex of NSF/SNAPs/SNAREs disassembles when NSF hydrolyses ATP, and this disassembly event is believed to be essential for membrane fusion. SNAPs stimulate NSF ATPase activity, but it is not known which of NSF's two ATPase domains (D1 or D2) is affected. Using recombinant mutant NSFs defective in ATP hydrolysis in one domain only, we found that SNAPs stimulate NSF ATPase activity by a selective action on the D1 domain, yet had no effect on the D2 domain. Since the D1 domain of NSF is implicated in 20 S complex disassembly, this supports the idea that SNAP stimulation of NSF ATPase activity is required for membrane fusion.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas Portadoras/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Transporte Vesicular , Adenosina Trifosfatasas/genética , Sitios de Unión , Proteínas Portadoras/genética , Activación Enzimática , Mutagénesis Sitio-Dirigida , Proteínas Sensibles a N-Etilmaleimida , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Solubles de Unión al Factor Sensible a la N-Etilmaleimida
4.
Biochem J ; 325 ( Pt 2): 511-8, 1997 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-9230135

RESUMEN

alpha-SNAP [soluble N-ethylmaleimide-sensitive fusion protein (NSF)-attachment protein] is required for fusion of transport vesicles with their target membrane. In this study, we have examined the membrane-binding properties of alpha-SNAP. We have found that in several tissues a much larger amount of alpha-SNAP per unit weight of protein is bound to membranes than is free in the cytosol. Biochemical analysis shows that a fraction of alpha-SNAP behaves in ways characteristic of hydrophobic, lipid-associated proteins. These findings suggest that membrane binding may be accounted for, at least in part, by interaction with membrane lipid. Consistent with this idea, binding of newly synthesized alpha-SNAP to brain membranes was found to be independent of functional SNAP receptors and could be accounted for by direct binding of alpha-SNAP to membrane lipid. Furthermore, membrane lipid enhanced the ability of alpha-SNAP to stimulate NSF-dependent ATPase activity.


Asunto(s)
Proteínas Portadoras/metabolismo , Membrana Celular/metabolismo , Lípidos de la Membrana/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Transporte Vesicular , Adenosina Trifosfatasas/metabolismo , Animales , Azirinas/metabolismo , Western Blotting , Encéfalo/metabolismo , Proteínas Portadoras/química , Reactivos de Enlaces Cruzados/metabolismo , Electroforesis en Gel de Poliacrilamida , Cinética , Liposomas/metabolismo , Fusión de Membrana/fisiología , Proteínas de la Membrana/química , Unión Proteica , Ratas , Proteínas Recombinantes/metabolismo , Proteínas SNARE , Proteínas Solubles de Unión al Factor Sensible a la N-Etilmaleimida , Porcinos , Tripsina/metabolismo
5.
EMBO J ; 15(4): 745-52, 1996 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-8631296

RESUMEN

N-ethylmaleimide-sensitive fusion protein (NSF) is a component of intracellular transport reactions. In order to understand the role of NSF during the fusion of endocytic transport vesicles with the endosome, we have investigated the binding of NSF to purified clathrin-coated vesicle components. First, we have examined whether detergent-solubilized coated vesicle membranes will support formation of NSF-containing 'fusion complexes'. Our results show that these membranes are substantially enriched in components capable of driving formation of these complexes, when compared with membranes from other sources. Secondly, we have analysed coated vesicle preparations for their NSF content. Coated vesicle preparations contain significant amounts of NSF. This was shown to be associated with coated vesicles rather than contaminating membranes by a number of criteria, and was found to be bound in an ATP-independent manner. These findings are discussed in the light of current models for vesicle fusion.


Asunto(s)
Proteínas Portadoras/metabolismo , Vesículas Cubiertas/metabolismo , Fusión de Membrana , Proteínas de Transporte Vesicular , Transporte Biológico , Sistema Libre de Células , Humanos , Membranas Intracelulares/química , Membranas Intracelulares/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Sensibles a N-Etilmaleimida , Proteínas Solubles de Unión al Factor Sensible a la N-Etilmaleimida
7.
Pediatr Hematol Oncol ; 12(5): 455-62, 1995.
Artículo en Inglés | MEDLINE | ID: mdl-8519630

RESUMEN

The clinical usefulness of the measurement of red cell zinc protoporphyrin (ZPP), an indicator of iron-deficient erythropoiesis, was assessed in a group of UK children undergoing investigation for red cell microcytosis. Of 213 children studied, 136 had increased ZPP values. Of these, 86 also had reduced iron stores as indicated by serum ferritin concentration. The 50 children with increased ZPP and normal ferritin values could be divided into two main groups. One group comprised 28 children who had evidence of coexistent infection or inflammatory disease. The other included 21 children who had beta-thalassemia trait (n = 19) or disease (n = 2). Among the 77 children with normal ZPP values, 22 had reduced serum ferritin concentrations and 45 did not, nor did they have evidence of beta-thalassemia. Microcytosis in some of these children could have been due to alpha-thalassemia trait. Measurement of ZPP is a simple, quick, and relatively cheap method of confirming the presence of iron-deficient erythropoiesis even when inflammation makes serum ferritin measurements unreliable. It is not as sensitive as the ferritin assay to the early stages of iron deficiency, and its specificity is reduced by the occurrence of raised values in most children with beta-thalassemia trait. Where there is microcytosis, normal values, together with normal hemoglobin A2 and serum ferritin concentrations, are likely to indicate alpha-thalassemia trait.


Asunto(s)
Eritrocitos Anormales , Eritrocitos/química , Deficiencias de Hierro , Protoporfirinas/sangre , Adolescente , Niño , Preescolar , Ferritinas/sangre , Hemoglobinas/análisis , Humanos , Lactante , Talasemia beta/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA