Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Ecol ; 31(2): 658-674, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34704311

RESUMEN

Coevolution is often considered a major driver of speciation, but evidence for this claim is not always found because diversity might be cryptic. When morphological divergence is low, molecular data are needed to uncover diversity. This is often the case in mites, which are known for their extensive and often cryptic diversity. We studied mites of the genus Poecilochirus that are phoretic on burying beetles (Silphidae: Nicrophorus). Poecilochirus taxonomy is poorly understood. Most studies on this genus focus on the evolutionary ecology of Poecilochirus carabi sensu lato, a complex of at least two biological species. Based on molecular data of 230 specimens from 43 locations worldwide, we identified 24 genetic clusters that may represent species. We estimate that these mites began to diversify during the Paleogene, when the clade containing P. subterraneus branched off and the remaining mites diverged into two further clades. One clade resembles P. monospinosus. The other clade contains 17 genetic clusters resembling P. carabi s.l.. Among these are P. carabi sensu stricto, P. necrophori, and potentially many additional cryptic species. Our analyses suggest that these clades were formed in the Miocene by large-scale geographic separation; co-speciation of mites with the host beetles can be largely ruled out. Diversification also seems to have happened on a smaller scale, potentially due to adaptation to specific hosts or local abiotic conditions, causing some clusters to specialize on certain beetle species. Our results suggest that biodiversity in this genus was generated by multiple interacting forces shaping the tangled webs of life.


Asunto(s)
Escarabajos , Ácaros , Animales , Evolución Biológica , Escarabajos/genética , Especificidad del Huésped , Ácaros/genética , Filogenia , Especificidad de la Especie
2.
PLoS One ; 15(1): e0228047, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31961905

RESUMEN

The fitness and virulence of parasites is often determined by how many resources they can wrangle out of their hosts. Host defenses that help to keep resources from the parasites will then reduce virulence and parasite fitness. Here, we study whether host brood care and brood size regulation can protect host fitness and harm a parasite. We use the biparental brood-caring burying beetle Nicrophorus vespilloides and its phoretic Poecilochirus carabi mites as a model. Since paternal brood care does not seem to benefit the offspring in a clean laboratory setting, the male presence has been suggested to strengthen the defense against parasites. We manipulated male presence and found no effect on the fitness of the parasitic mites or the beetle offspring. We further manipulated beetle brood size and found larger broods to reduce parasite fitness. The specific pattern we observed suggests that beetle larvae are strong competitors and consume the carrion resource before all parasites develop. They thus starve the parasites. These results shed new light on the observation that the parasites appear to reduce host brood size early on-potentially to avert later competition their offspring might have to face.


Asunto(s)
Escarabajos , Interacciones Huésped-Parásitos , Larva , Ácaros/fisiología , Parásitos/fisiología , Animales , Conducta Animal/fisiología , Tamaño de la Nidada , Escarabajos/parasitología , Escarabajos/fisiología , Conducta Competitiva , Larva/parasitología , Larva/fisiología , Masculino
3.
Ecol Evol ; 7(24): 10743-10751, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29299254

RESUMEN

Recurring species interactions can cause species to adapt to each other. Specialization will increase the fitness of symbionts in the coevolved association but may reduce the flexibility of symbiont choice as it will often decrease fitness in interactions with other than the main symbiont species. We analyzed the fitness interactions between a complex of two cryptic mite species and their sympatric burying beetle hosts in a European population. Poecilochirus mites (Mesostigmata, Parasitidae) are phoretic on burying beetles and reproduce alongside beetles, while these care for their offspring at vertebrate carcasses. While Poecilochirus carabi is typically found on Nicrophorus vespilloides beetles, P. necrophori is associated with N. vespillo. It has long been known that the mites discriminate between the two beetle species, but the fitness consequences of this choice remained unknown. We experimentally associated both mite species with both beetle species and found that mite fitness suffered when mites reproduced alongside a nonpreferred host. In turn, there is evidence that one of the beetle species is better able to cope with the mite species they are typically associated with. The overall fitness effect of mites on beetles was negative in our laboratory experiments. The Poecilochirus mites studied here are thus specialized competitors or parasites of burying beetles.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA