Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Ann Oncol ; 35(7): 588-606, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38834388

RESUMEN

BACKGROUND: Advancements in the field of precision medicine have prompted the European Society for Medical Oncology (ESMO) Precision Medicine Working Group to update the recommendations for the use of tumour next-generation sequencing (NGS) for patients with advanced cancers in routine practice. METHODS: The group discussed the clinical impact of tumour NGS in guiding treatment decision using the ESMO Scale for Clinical Actionability of molecular Targets (ESCAT) considering cost-effectiveness and accessibility. RESULTS: As for 2020 recommendations, ESMO recommends running tumour NGS in advanced non-squamous non-small-cell lung cancer, prostate cancer, colorectal cancer, cholangiocarcinoma, and ovarian cancer. Moreover, it is recommended to carry out tumour NGS in clinical research centres and under specific circumstances discussed with patients. In this updated report, the consensus within the group has led to an expansion of the recommendations to encompass patients with advanced breast cancer and rare tumours such as gastrointestinal stromal tumours, sarcoma, thyroid cancer, and cancer of unknown primary. Finally, ESMO recommends carrying out tumour NGS to detect tumour-agnostic alterations in patients with metastatic cancers where access to matched therapies is available. CONCLUSION: Tumour NGS is increasingly expanding its scope and application within oncology with the aim of enhancing the efficacy of precision medicine for patients with cancer.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Neoplasias , Medicina de Precisión , Humanos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/normas , Medicina de Precisión/métodos , Medicina de Precisión/normas , Neoplasias/genética , Neoplasias/patología , Neoplasias/terapia , Oncología Médica/métodos , Oncología Médica/normas , Europa (Continente)
3.
Virchows Arch ; 484(2): 263-272, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38429607

RESUMEN

Neoplasias of the hepatopancreatobiliary tract are growing in numbers, have the poorest prognosis of all major cancer entities, and thus represent a rising clinical problem. Their molecular diagnostic has dramatically improved, contributing to tumor subtyping, definition of malignancy, and uncovering cases with hereditary predisposition. Most of all, predictive molecular testing allows to identify cases amenable to treatment with the rising number of approved targeted drugs, immune-oncological treatment, and clinical trials. In this review, the current state of molecular testing and its contribution to clinical decision-making are outlined.


Asunto(s)
Neoplasias Pancreáticas , Patología Molecular , Humanos , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Predisposición Genética a la Enfermedad , Técnicas de Diagnóstico Molecular , Oncología Médica
5.
Pathologie (Heidelb) ; 44(Suppl 3): 188-192, 2023 Dec.
Artículo en Alemán | MEDLINE | ID: mdl-37932477

RESUMEN

In a recently published study a new genetic hypothesis was established that explained the existence of CTNNB1 mutations in Lynch syndrome-associated colorectal carcinomas (MLH1-LS-CRC). This hypothesis states that a mitotic recombination on chromosome 3p simultaneously leads to inactivation of the mismatch repair gene MLH1 and to the activation of CTNNB1. This explains the increased frequency of CTNNB1 mutations in MLH1-LS-CRC compared with other colon carcinomas. To test this hypothesis, various experiments were carried out that show that the first phase of recombination occurs in non-cancerous tissues, which favours the development of CTNNB1 mutations. This mechanism could explain the rapid tumour progression in MLH1-LS-CRC. The results highlight the importance of mitotic recombination in carcinogenesis and provide an insight into the genetic basis of colorectal carcinoma in the context of Lynch syndrome.


Asunto(s)
Neoplasias Colorrectales Hereditarias sin Poliposis , Neoplasias Colorrectales , Humanos , Neoplasias Colorrectales Hereditarias sin Poliposis/genética , Homólogo 1 de la Proteína MutL/genética , Neoplasias Colorrectales/genética , Regiones Promotoras Genéticas , Carcinogénesis/genética
8.
ESMO Open ; 7(6): 100637, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36423362

RESUMEN

BACKGROUND: COGNITION (Comprehensive assessment of clinical features, genomics and further molecular markers to identify patients with early breast cancer for enrolment on marker driven trials) is a diagnostic registry trial that employs genomic and transcriptomic profiling to identify biomarkers in patients with early breast cancer with a high risk for relapse after standard neoadjuvant chemotherapy (NACT) to guide genomics-driven targeted post-neoadjuvant therapy. PATIENTS AND METHODS: At National Center for Tumor Diseases Heidelberg patients were biopsied before starting NACT, and for patients with residual tumors after NACT additional biopsy material was collected. Whole-genome/exome and transcriptome sequencing were applied on tumor and corresponding blood samples. RESULTS: In the pilot phase 255 patients were enrolled, among which 213 were assessable: thereof 48.8% were identified to be at a high risk for relapse following NACT; 86.4% of 81 patients discussed in the molecular tumor board were eligible for a targeted therapy within the interventional multiarm phase II trial COGNITION-GUIDE (Genomics-guided targeted post neoadjuvant therapy in patients with early breast cancer) starting enrolment in Q4/2022. An in-depth longitudinal analysis at baseline and in residual tumor tissue of 16 patients revealed some cases with clonal evolution but largely stable genetic alterations, suggesting restricted selective pressure of broad-acting cytotoxic neoadjuvant chemotherapies. CONCLUSIONS: While most precision oncology initiatives focus on metastatic disease, the presented concept offers the opportunity to empower novel therapy options for patients with high-risk early breast cancer in the post-neoadjuvant setting within a biomarker-driven trial and provides the basis to test the value of precision oncology in a curative setting with the overarching goal to increase cure rates.


Asunto(s)
Neoplasias de la Mama , Femenino , Humanos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Terapia Neoadyuvante , Recurrencia Local de Neoplasia/tratamiento farmacológico , Medicina de Precisión , Estudios Prospectivos
9.
NPJ Precis Oncol ; 6(1): 36, 2022 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-35681079

RESUMEN

Homologous repair deficiency (HRD) is present in many cancer types at variable prevalence and can indicate response to platinum-based chemotherapy and PARP inhibition. We developed a tumor classification system based on the loss of function of genes in the homologous recombination repair (HRR) pathway. To this end, somatic and germline alterations in BRCA1/2 and 140 other HRR genes were included and assessed for the impact on gene function. Additionally, information on the allelic hit type and on BRCA1 promoter hypermethylation was included. The HRDsum score including LOH, LST, and TAI was calculated for 8847 tumors of the TCGA cohort starting from genotyping data and for the subcohort of ovarian cancer also starting from WES data. Pan-cancer, deleterious BRCA1/2 alterations were detected in 4% of the tumors, while 18% of the tumors were HRD-positive (HRDsum ≥ 42). Across 33 cancer types, both BRCA1/2 alterations and HRD-positivity were most prevalent in ovarian cancer (20% and 69%). Pan-cancer, tumors with biallelic deleterious alterations in BRCA1/2 were separated strongly from tumors without relevant alterations (AUC = 0.89), while separation for tumors with monoallelic deleterious BRCA1/2 alterations was weak (AUC = 0.53). Tumors with biallelic deleterious alterations in other HHR genes were separated moderately from tumors without relevant alterations (AUC = 0.63), while separation for tumors with such monoallelic alterations was weaker (AUC = 0.57). In ovarian cancer, HRDsum scores calculated from WES data correlated strongly with HRDsum scores calculated from genotyping data (R = 0.87) and were slightly (4%) higher. We comprehensively analyzed HRD scores and their association with mutations in HRR genes in common cancer types. Our study identifies important parameters influencing HRD measurement and argues for an integration of HRDsum score with specific mutational profiles.

10.
Br J Dermatol ; 186(3): 553-563, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34726260

RESUMEN

BACKGROUND: Epithelioid haemangioma (EH) arising from the skin is a benign vascular tumour with marked inflammatory cell infiltration, which exhibits a high tendency to persist and frequently recurs after resection. So far, the underlying pathogenesis is largely elusive. OBJECTIVES: To identify genetic alterations by next-generation sequencing and/or droplet digital polymerase chain reaction (ddPCR) in cutaneous EH. METHODS: DNA and RNA from an EH lesion of an index patient were subjected to whole-genome and RNA sequencing. Multiplex PCR-based panel sequencing of genomic DNA isolated from archival formalin-fixed paraffin-embedded tissue of 18 patients with cutaneous EH was performed. ddPCR was used to confirm mutations. RESULTS: We identified somatic mutations in genes of the mitogen-activated protein kinase (MAPK) pathway (MAP2K1 and KRAS) in cutaneous EH biopsies. By ddPCR we could confirm the recurrent presence of activating, low-frequency mutations affecting MAP2K1. In total, nine out of 18 patients analysed showed activating MAPK pathway mutations, which were mutually exclusive. Comparative analysis of tissue areas enriched for lymphatic infiltrate or aberrant endothelial cells, respectively, revealed an association of these mutations with the presence of endothelial cells. CONCLUSIONS: Taken together, our data suggest that EH shows somatic mutations in genes of the MAPK pathway which might contribute to the formation of this benign tumour.


Asunto(s)
Hemangioma , Neoplasias Cutáneas , ADN , Células Endoteliales , Hemangioma/genética , Humanos , Proteínas Quinasas Activadas por Mitógenos/genética , Reacción en Cadena de la Polimerasa Multiplex , Mutación/genética , Recurrencia Local de Neoplasia , Neoplasias Cutáneas/genética
11.
ESMO Open ; 6(6): 100310, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34808524

RESUMEN

BACKGROUND: Approvals of cancer therapeutics are primarily disease entity specific. Current molecular diagnostic approaches frequently identify actionable alterations in rare cancers or rare subtypes of common cancers for which the corresponding treatments are not approved and unavailable within clinical trials due to entity-related eligibility criteria. Access may be negotiated with health insurances. However, approval rates vary, and critical information required for a scientific evaluation of treatment-associated risks and benefits is not systematically collected. Thus clinical trials with optimized patient selection and comprehensive molecular characterization are essential for translating experimental treatments into standard care. PATIENTS AND METHODS: Continuous ReAssessment with Flexible ExTension in Rare Malignancies (CRAFT) is an open-label phase II trial for adults with pretreated, locally advanced, or metastatic solid tumors. Based on the evaluation by a molecular tumor board, patients are assigned to combinations of six molecularly targeted agents and a programmed death-ligand 1 (PD-L1) antagonist within seven study arms focusing on (i) BRAF V600 mutations; (ii) ERBB2 amplification and/or overexpression, activating ERBB2 mutations; (iii) ALK rearrangements, activating ALK mutations; (iv and v) activating PIK3CA and AKT mutations, other aberrations predicting increased PI3K-AKT pathway activity; (vi) aberrations predicting increased RAF-MEK-ERK pathway activity; (vii) high tumor mutational burden and other alterations predicting sensitivity to PD-L1 inhibition. The primary endpoint is the disease control rate (DCR) at week 16; secondary and exploratory endpoints include the progression-free survival ratio, overall survival, and patient-reported outcomes. Using Simon's optimal two-stage design, 14 patients are accrued for each study arm. If three or fewer patients achieve disease control, the study arm is stopped. Otherwise, 11 additional patients are accrued. If the DCR exceeds 7 of 25 patients, the null hypothesis is rejected for the respective study arm. CONCLUSIONS: CRAFT was activated in October 2021 and will recruit at 10 centers in Germany. TRIAL REGISTRATION NUMBERS: EudraCT: 2019-003192-18; ClinicalTrials.gov: NCT04551521.


Asunto(s)
Antineoplásicos , Neoplasias , Adulto , Antineoplásicos/uso terapéutico , Ensayos Clínicos Fase II como Asunto , Humanos , Estudios Multicéntricos como Asunto , Mutación , Neoplasias/tratamiento farmacológico , Fosfatidilinositol 3-Quinasas/uso terapéutico , Supervivencia sin Progresión
12.
Ann Oncol ; 32(12): 1626-1636, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34606929

RESUMEN

BACKGROUND: Tumor mutational burden (TMB) measurements aid in identifying patients who are likely to benefit from immunotherapy; however, there is empirical variability across panel assays and factors contributing to this variability have not been comprehensively investigated. Identifying sources of variability can help facilitate comparability across different panel assays, which may aid in broader adoption of panel assays and development of clinical applications. MATERIALS AND METHODS: Twenty-nine tumor samples and 10 human-derived cell lines were processed and distributed to 16 laboratories; each used their own bioinformatics pipelines to calculate TMB and compare to whole exome results. Additionally, theoretical positive percent agreement (PPA) and negative percent agreement (NPA) of TMB were estimated. The impact of filtering pathogenic and germline variants on TMB estimates was assessed. Calibration curves specific to each panel assay were developed to facilitate translation of panel TMB values to whole exome sequencing (WES) TMB values. RESULTS: Panel sizes >667 Kb are necessary to maintain adequate PPA and NPA for calling TMB high versus TMB low across the range of cut-offs used in practice. Failure to filter out pathogenic variants when estimating panel TMB resulted in overestimating TMB relative to WES for all assays. Filtering out potential germline variants at >0% population minor allele frequency resulted in the strongest correlation to WES TMB. Application of a calibration approach derived from The Cancer Genome Atlas data, tailored to each panel assay, reduced the spread of panel TMB values around the WES TMB as reflected in lower root mean squared error (RMSE) for 26/29 (90%) of the clinical samples. CONCLUSIONS: Estimation of TMB varies across different panels, with panel size, gene content, and bioinformatics pipelines contributing to empirical variability. Statistical calibration can achieve more consistent results across panels and allows for comparison of TMB values across various panel assays. To promote reproducibility and comparability across assays, a software tool was developed and made publicly available.


Asunto(s)
Mutación , Neoplasias , Biomarcadores de Tumor , Humanos , Neoplasias/diagnóstico , Neoplasias/genética , Reproducibilidad de los Resultados , Carga Tumoral
13.
ESMO Open ; 6(5): 100253, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34487971

RESUMEN

BACKGROUND: Targeted therapies have improved survival and quality of life for patients with non-small-cell lung cancer with actionable driver mutations. However, epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor 2 gene (HER2, also known as ERBB2) exon 20 insertions (Ex20mut) are characterized by a poor response to currently approved tyrosine kinase inhibitors and immunotherapies. The underlying immune biology is not well understood. MATERIALS AND METHODS: We carried out messenger RNA expression profiling of lung adenocarcinomas (ADCs) with ERBB2 (n = 19) and EGFR exon 20-insertion mutations (n = 13) and compared these to tumors with classical EGFR mutations (n = 40, affecting EGFR exons 18, 19 or 21) and EGFR/ERBB2 mutation-negative lung ADC (EGFR/ERBB2wt, n = 26) focusing on immunologically relevant transcripts. Tumor-infiltrating immune cells were estimated from gene expression profiles. RESULTS: Cytotoxic cells were significantly lower in EGFR-mutated tumors regardless of the affected exon, while Th1 cells were significantly lower in EGFR-Ex20mut compared to EGFR/ERBB2wt tumors. We assessed the differentially expressed genes of ERBB2-Ex20mut and EGFR-Ex20mut tumors compared to EGFR-Ex18/19/21mut and EGFR/ERBB2wt tumors. Of these, the genes GUSB, HDAC11, IFNGR2, PUM1, RASGRF1 and RBL2 were up-regulated, while a lower expression of CBLC, GBP1, GBP2, GBP4 and MYC was observed in all three comparison groups. The omnibus test revealed 185 significantly (FDR = 5%) differentially expressed genes and we found these four most significant gene expression changes in the study cohort: VHL and JAK1 were overexpressed in ERBB2-Ex20mut and EGFR-Ex20mut tumors compared to both EGFR-Ex18/19/21mut and EGFR/ERBB2wt tumors. RIPK1 and STK11IP showed the highest expression in ERBB2-Ex20mut tumors. CONCLUSIONS: Targeted gene expression profiling is a promising tool to read out the characteristics of the tumor microenvironment from routine diagnostic lung cancer biopsies. Significant immune reactivity and specific immunosuppressive characteristics in ERBB2-Ex20mut and EGFR-Ex20mut lung ADC with at least some degree of immune infiltration support further clinical evaluation of immune-modulators as partners of immune checkpoint inhibitors in such tumors.


Asunto(s)
Adenocarcinoma del Pulmón , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Adenocarcinoma del Pulmón/genética , Receptores ErbB/genética , Histona Desacetilasas , Humanos , Neoplasias Pulmonares/genética , Calidad de Vida , Proteínas de Unión al ARN , Receptor ErbB-2/genética , Microambiente Tumoral/genética
14.
ESMO Open ; 6(5): 100254, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34481329

RESUMEN

BACKGROUND: The advanced lung cancer inflammation index [ALI: body mass index × serum albumin/neutrophil-to-lymphocyte ratio (NLR)] reflects systemic host inflammation, and is easily reproducible. We hypothesized that ALI could assist guidance of non-small-cell lung cancer (NSCLC) treatment with immune checkpoint inhibitors (ICIs). PATIENTS AND METHODS: This retrospective study included 672 stage IV NSCLC patients treated with programmed death-ligand 1 (PD-L1) inhibitors alone or in combination with chemotherapy in 25 centers in Greece and Germany, and a control cohort of 444 stage IV NSCLC patients treated with platinum-based chemotherapy without subsequent targeted or immunotherapy drugs. The association of clinical outcomes with biomarkers was analyzed with Cox regression models, including cross-validation by calculation of the Harrell's C-index. RESULTS: High ALI values (>18) were significantly associated with longer overall survival (OS) for patients receiving ICI monotherapy [hazard ratio (HR) = 0.402, P < 0.0001, n = 460], but not chemo-immunotherapy (HR = 0.624, P = 0.111, n = 212). Similar positive correlations for ALI were observed for objective response rate (36% versus 24%, P = 0.008) and time-on-treatment (HR = 0.52, P < 0.001), in case of ICI monotherapy only. In the control cohort of chemotherapy, the association between ALI and OS was weaker (HR = 0.694, P = 0.0002), and showed a significant interaction with the type of treatment (ICI monotherapy versus chemotherapy, P < 0.0001) upon combined analysis of the two cohorts. In multivariate analysis, ALI had a stronger predictive effect than NLR, PD-L1 tumor proportion score, lung immune prognostic index, and EPSILoN scores. Among patients with PD-L1 tumor proportion score ≥50% receiving first-line ICI monotherapy, a high ALI score >18 identified a subset with longer OS and time-on-treatment (median 35 and 16 months, respectively), similar to these under chemo-immunotherapy. CONCLUSIONS: The ALI score is a powerful prognostic and predictive biomarker for patients with advanced NSCLC treated with PD-L1 inhibitors alone, but not in combination with chemotherapy. Its association with outcomes appears to be stronger than that of other widely used parameters. For PD-L1-high patients, an ALI score >18 could assist the selection of cases that do not need addition of chemotherapy.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Humanos , Inhibidores de Puntos de Control Inmunológico , Inflamación , Neoplasias Pulmonares/tratamiento farmacológico , Estudios Retrospectivos
15.
ESMO Open ; 6(3): 100161, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34090172

RESUMEN

BACKGROUND: The improved efficacy of tyrosine kinase inhibitors (TKI) mandates reappraisal of local therapy (LT) for brain metastases (BM) of oncogene-driven non-small-cell lung cancer (NSCLC). PATIENTS AND METHODS: This study included all epidermal growth factor receptor-mutated (EGFR+, n = 108) and anaplastic lymphoma kinase-rearranged (ALK+, n = 33) TKI-naive NSCLC patients diagnosed with BM in the Thoraxklinik Heidelberg between 2009 and 2019. Eighty-seven patients (62%) received early LT, while 54 (38%) received delayed (n = 34; 24%) or no LT (n = 20; 14%). LT comprised stereotactic (SRT; n = 40; 34%) or whole-brain radiotherapy (WBRT; n = 77; 66%), while neurosurgical resection was carried out in 19 cases. RESULTS: Median overall survival (OS) was 49.1 months for ALK+ and 19.5 months for EGFR+ patients (P = 0.001), with similar median intracranial progression-free survival (icPFS) (15.7 versus 14.0 months, respectively; P = 0.80). Despite the larger and more symptomatic BM (P < 0.001) of patients undergoing early LT, these experienced longer icPFS [hazard ratio (HR) 0.52; P = 0.024], but not OS (HR 1.63; P = 0.12), regardless of the radiotherapy technique (SRT versus WBRT) and number of lesions. High-risk oncogene variants, i.e. non-del19 EGFR mutations and 'short' EML4-ALK fusions (mainly variant 3, E6:A20), were associated with earlier intracranial progression (HR 2.97; P = 0.001). The longer icPFS with early LT was also evident in separate analyses of the EGFR+ and ALK+ subsets. CONCLUSIONS: Despite preferential use for cases with poor prognostic factors, early LT prolongs the icPFS, but not OS, in TKI-treated EGFR+/ALK+ NSCLC. Considering the lack of survival benefit, and the neurocognitive effects of WBRT, patients presenting with polytopic BM may benefit from delaying radiotherapy, or from radiosurgery of multiple or selected lesions. For SRT candidates, the improved tumor control with earlier radiotherapy should be weighed against the potential toxicity and the enhanced intracranial activity of newer TKI. High-risk EGFR/ALK variants are associated with earlier intracranial failure and identify patients who could benefit from more aggressive management.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Radiocirugia , Encéfalo , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/radioterapia , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Oncogenes/genética
16.
Br J Dermatol ; 185(6): 1186-1199, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34185311

RESUMEN

BACKGROUND: Eccrine porocarcinoma (EPC) is a rare skin cancer arising from the eccrine sweat glands. Due to the lack of effective therapies, metastasis is associated with a high mortality rate. OBJECTIVES: To investigate the drivers of EPC progression. METHODS: We carried out genomic and transcriptomic profiling of metastatic EPC (mEPC), validation of the observed alterations in an EPC patient-derived cell line, confirmation of relevant observations in a large patient cohort of 30 tumour tissues, and successful treatment of a patient with mEPC under the identified treatment regimens. RESULTS: mEPC was characterized by a high tumour mutational burden (TMB) with an ultraviolet signature, widespread copy number alterations and gene expression changes that affected cancer-relevant cellular processes such as cell cycle regulation and proliferation, including a pathogenic TP53 (tumour protein 53) mutation, a copy number deletion in the CDKN2A (cyclin dependent kinase inhibitor 2A) region and a CTNND1/PAK1 [catenin delta 1/p21 (RAC1) activated kinase 1] gene fusion. The overexpression of EGFR (epidermal growth factor receptor), PAK1 and MAP2K1 (mitogen-activated protein kinase kinase 1; also known as MEK1) genes translated into strong protein expression and respective pathway activation in the tumour tissue. Furthermore, a patient-derived cell line was sensitive to EGFR and MEK inhibition, confirming the functional relevance of the pathway activation. Immunohistochemistry analyses in a large patient cohort showed the relevance of the observed changes to the pathogenesis of EPC. Our results indicate that mEPC should respond to immune or kinase inhibitor therapy. Indeed, the advanced disease of our index patient was controlled by EGFR-directed therapy and immune checkpoint inhibition for more than 2 years. CONCLUSIONS: Molecular profiling demonstrated high TMB and EGFR/MAPK pathway activation to be novel therapeutic targets in mEPC.


Asunto(s)
Porocarcinoma Ecrino , Receptores ErbB , Sistema de Señalización de MAP Quinasas , Neoplasias de las Glándulas Sudoríparas , Porocarcinoma Ecrino/genética , Receptores ErbB/genética , Humanos , Terapia Molecular Dirigida , Mutación , Neoplasias de las Glándulas Sudoríparas/tratamiento farmacológico , Neoplasias de las Glándulas Sudoríparas/genética
17.
Lung Cancer ; 148: 105-112, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32871455

RESUMEN

OBJECTIVE: Panel-based next-generation sequencing (NGS) is increasingly used for the diagnosis of EGFR-mutated non-small-cell lung cancer (NSCLC) and could improve risk assessment in combination with clinical parameters. MATERIALS AND METHODS: To this end, we retrospectively analyzed the outcome of 400 tyrosine kinase inhibitor (TKI)-treated EGFR+ NSCLC patients with validation of results in an independent cohort (n = 130). RESULTS: EGFR alterations other than exon 19 deletions (non-del19), TP53 co-mutations, and brain metastases at baseline showed independent associations of similar strengths with progression-free (PFS hazard ratios [HR] 2.1-2.3) and overall survival (OS HR 1.7-2.2), in combination defining patient subgroups with distinct outcome (EGFR+NSCLC risk Score, "ENS", p < 0.001). Co-mutations beyond TP53 were rarely detected by our multigene panel (<5%) and not associated with clinical endpoints. Smoking did not affect outcome independently, but was associated with non-del19 EGFR mutations (p < 0.05) and comorbidities (p < 0.001). Laboratory parameters, like the blood lymphocyte-to-neutrophil ratio and serum LDH, correlated with the metastatic pattern (p < 0.01), but had no independent prognostic value. Reduced ECOG performance status (PS) was associated with comorbidities (p < 0.05) and shorter OS (p < 0.05), but preserved TKI efficacy. Non-adenocarcinoma histology was also associated with shorter OS (p < 0.05), but rare (2-3 %). The ECOG PS and non-adenocarcinoma histology could not be validated in our independent cohort, and did not increase the range of prognostication alongside the ENS. CONCLUSIONS: EGFR variant, TP53 status and brain metastases predict TKI efficacy and survival in EGFR+ NSCLC irrespective of other currently available parameters ("ENS"). Together, they constitute a practical and reproducible approach for risk stratification of newly diagnosed metastatic EGFR+ NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico , Carcinoma de Pulmón de Células no Pequeñas/genética , Receptores ErbB/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Mutación , Inhibidores de Proteínas Quinasas/uso terapéutico , Estudios Retrospectivos , Medición de Riesgo
18.
Ann Oncol ; 31(11): 1491-1505, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32853681

RESUMEN

Next-generation sequencing (NGS) allows sequencing of a high number of nucleotides in a short time frame at an affordable cost. While this technology has been widely implemented, there are no recommendations from scientific societies about its use in oncology practice. The European Society for Medical Oncology (ESMO) is proposing three levels of recommendations for the use of NGS. Based on the current evidence, ESMO recommends routine use of NGS on tumour samples in advanced non-squamous non-small-cell lung cancer (NSCLC), prostate cancers, ovarian cancers and cholangiocarcinoma. In these tumours, large multigene panels could be used if they add acceptable extra cost compared with small panels. In colon cancers, NGS could be an alternative to PCR. In addition, based on the KN158 trial and considering that patients with endometrial and small-cell lung cancers should have broad access to anti-programmed cell death 1 (anti-PD1) antibodies, it is recommended to test tumour mutational burden (TMB) in cervical cancers, well- and moderately-differentiated neuroendocrine tumours, salivary cancers, thyroid cancers and vulvar cancers, as TMB-high predicted response to pembrolizumab in these cancers. Outside the indications of multigene panels, and considering that the use of large panels of genes could lead to few clinically meaningful responders, ESMO acknowledges that a patient and a doctor could decide together to order a large panel of genes, pending no extra cost for the public health care system and if the patient is informed about the low likelihood of benefit. ESMO recommends that the use of off-label drugs matched to genomics is done only if an access programme and a procedure of decision has been developed at the national or regional level. Finally, ESMO recommends that clinical research centres develop multigene sequencing as a tool to screen patients eligible for clinical trials and to accelerate drug development, and prospectively capture the data that could further inform how to optimise the use of this technology.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Masculino , Secuenciación de Nucleótidos de Alto Rendimiento , Oncología Médica , Medicina de Precisión , Guías de Práctica Clínica como Asunto
19.
Urologe A ; 59(3): 318-325, 2020 Mar.
Artículo en Alemán | MEDLINE | ID: mdl-31541269

RESUMEN

BACKGROUND: Technical advancement and availability of high-throughput analysis has advanced molecular subtyping of most cancers. Thus, new possibilities for precision oncology have emerged. AIM: Therefore, we aimed to collect data regarding availability and use of next generation sequencing (NGS) for urothelial cancer within the uropathology working group of the German Society of Pathology. METHODS: We collected data by questionnaires and additionally asked for sequencing results of bladder cancers in the participating institutions. RESULTS: A total of 13 university-affiliated institutes of pathology took part in the survey. All university institutes offer NGS-based molecular panel diagnostics and provide panels covering between 15 and 170 genes. Altogether, only 20 bladder cancers were sequenced in routine diagnostics and for 10 cancers potential targeted treatment options were available. DISCUSSION: So far, despite availability of NGS diagnostics at university institutes of pathology, only few bladder cancer samples have been sequenced. Based on current data from the molecular subtyping of bladder cancers, we recommend a step-by-step protocol with basic immunohistochemistry analysis and subsequent subtype-dependent analyses, e.g., alterations of the fibroblast growth factor receptors (FGFR) or comprehensive gene panel analyses.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Medicina de Precisión , Humanos , Mutación , Patología Molecular , Encuestas y Cuestionarios , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/patología
20.
Ann Oncol ; 30(9): 1496-1506, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31268125

RESUMEN

BACKGROUND: Panel sequencing based estimates of tumor mutational burden (psTMB) are increasingly replacing whole exome sequencing (WES) tumor mutational burden as predictive biomarker of immune checkpoint blockade (ICB). DESIGN: A mathematical law describing psTMB variability was derived using a random mutation model and complemented by the contributions of non-randomly mutated real-world cancer genomes and intratumoral heterogeneity through simulations in publicly available datasets. RESULTS: The coefficient of variation (CV) of psTMB decreased inversely proportional with the square root of the panel size and the square root of the TMB level. In silico simulations of all major commercially available panels in the TCGA pan-cancer cohort confirmed the validity of this mathematical law and demonstrated that the CV was 35% for TMB = 10 muts/Mbp for the largest panels of size 1.1-1.4 Mbp. Accordingly, misclassification rates (gold standard: WES) to separate 'TMBhigh' from 'TMBlow' using a cut-point of 199 mutations were 10%-12% in TCGA-LUAD and 17%-19% in TCGA-LUSC. A novel three-tier psTMB classification scheme which accounts for the likelihood of misclassification is proposed. Simulations in two WES datasets of immunotherapy treated patients revealed that small gene panels were poor predictors of ICB response. Moreover, we noted substantial intratumoral variance of psTMB scores in the TRACERx 100 cohort and identified indel burden as independent marker complementing missense mutation burden. CONCLUSIONS: A universal mathematical law describes accuracy limitations inherent to psTMB, which result in substantial misclassification rates. This scenario can be controlled by two measures: (i) a panel design that is based on the mathematical law described in this article: halving the CV requires a fourfold increase in panel size, (ii) a novel three-tier TMB classification scheme. Moreover, inclusion of indel burden can complement TMB reports. This work has substantial implications for panel design, TMB testing, clinical trials and patient management.


Asunto(s)
Biomarcadores de Tumor/genética , Mutación/genética , Neoplasias/genética , Carga Tumoral/genética , Humanos , Neoplasias/patología , Secuenciación del Exoma/estadística & datos numéricos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA