RESUMEN
Animals navigating turbulent odor plumes exhibit a rich variety of behaviors, and employ efficient strategies to locate odor sources. A growing body of literature has started to probe this complex task of localizing airborne odor sources in walking mammals to further our understanding of neural encoding and decoding of naturalistic sensory stimuli. However, correlating the intermittent olfactory information with behavior has remained a long-standing challenge due to the stochastic nature of the odor stimulus. We recently reported a method to record real-time olfactory information available to freely moving mice during odor-guided navigation, hence overcoming that challenge. Here we combine our odor-recording method with head-motion tracking to establish correlations between plume encounters and head movements. We show that mice exhibit robust head-pitch motions in the 5-14Hz range during an odor-guided navigation task, and that these head motions are modulated by plume encounters. Furthermore, mice reduce their angles with respect to the source upon plume contact. Head motions may thus be an important part of the sensorimotor behavioral repertoire during naturalistic odor-source localization.
Asunto(s)
Movimientos de la Cabeza , Odorantes , Animales , Odorantes/análisis , Ratones , Movimientos de la Cabeza/fisiología , Olfato/fisiología , Masculino , Ratones Endogámicos C57BL , Cabeza/fisiología , Conducta Animal/fisiologíaRESUMEN
Adult animals display robust locomotion, yet the timeline and mechanisms of how juvenile animals acquire coordinated movements and how these movements evolve during development are not well understood. Recent advances in quantitative behavioral analyses have paved the way for investigating complex natural behaviors like locomotion. In this study, we tracked the swimming and crawling behaviors of the nematode Caenorhabditis elegans from postembryonic development through to adulthood. Our principal component analyses revealed that adult C. elegans swimming is low dimensional, suggesting that a small number of distinct postures, or eigenworms, account for most of the variance in the body shapes that constitute swimming behavior. Additionally, we found that crawling behavior in adult C. elegans is similarly low dimensional, corroborating previous studies. Further, our analysis revealed that swimming and crawling are distinguishable within the eigenworm space. Remarkably, young L1 larvae are capable of producing the postural shapes for swimming and crawling seen in adults, despite frequent instances of uncoordinated body movements. In contrast, late L1 larvae exhibit robust coordination of locomotion, while many neurons crucial for adult locomotion are still under development. In conclusion, this study establishes a comprehensive quantitative behavioral framework for understanding the neural basis of locomotor development, including distinct gaits such as swimming and crawling in C. elegans.
Asunto(s)
Conducta Animal , Caenorhabditis elegans , Animales , Caenorhabditis elegans/fisiología , Conducta Animal/fisiología , Locomoción/fisiología , Natación/fisiología , Marcha/fisiologíaRESUMEN
Animals navigating turbulent odor plumes exhibit a rich variety of behaviors, and employ efficient strategies to locate odor sources. A growing body of literature has started to probe this complex task of localizing airborne odor sources in walking mammals to further our understanding of neural encoding and decoding of naturalistic sensory stimuli. However, correlating the intermittent olfactory information with behavior has remained a long-standing challenge due to the stochastic nature of the odor stimulus. We recently reported a method to record real-time olfactory information available to freely moving mice during odor-guided navigation, hence overcoming that challenge. Here we combine our odor-recording method with head-motion tracking to establish correlations between plume encounters and head movements. We show that mice exhibit robust head-pitch motions in the 5-14Hz range during an odor-guided navigation task, and that these head motions are modulated by plume encounters. Furthermore, mice orient towards the odor source upon plume contact. Head motions may thus be an important part of the sensorimotor behavioral repertoire during naturalistic odor-source localization.
RESUMEN
Adult animals display robust locomotion, yet the timeline and mechanisms of how juvenile animals acquire coordinated movements and how these movements evolve during development are not well understood. Recent advances in quantitative behavioral analyses have paved the way for investigating complex natural behaviors like locomotion. In this study, we tracked the swimming and crawling behaviors of the nematode Caenorhabditis elegans from postembryonic development through to adulthood. Our principal component analyses revealed that adult C. elegans swimming is low dimensional, suggesting that a small number of distinct postures, or eigenworms, account for most of the variance in the body shapes that constitute swimming behavior. Additionally, we found that crawling behavior in adult C. elegans is similarly low dimensional, corroborating previous studies. However, our analysis revealed that swimming and crawling are distinct gaits in adult animals, clearly distinguishable within the eigenworm space. Remarkably, young L1 larvae are capable of producing the postural shapes for swimming and crawling seen in adults, despite frequent instances of uncoordinated body movements. In contrast, late L1 larvae exhibit robust coordination of locomotion, while many neurons crucial for adult locomotion are still under development. In conclusion, this study establishes a comprehensive quantitative behavioral framework for understanding the neural basis of locomotor development, including distinct gaits such as swimming and crawling in C. elegans.