Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 181
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
Pharmaceuticals (Basel) ; 16(12)2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38139800

RESUMEN

Two fucosylated chondroitin sulfates were isolated from the sea cucumbers Psolus peronii and Holothuria nobilis using a conventional extraction procedure in the presence of papain, followed by anion-exchange chromatography on DEAE-Sephacel. Their composition was characterized in terms of quantitative monosaccharide and sulfate content, and structures were mainly elucidated using 1D- and 2D-NMR spectroscopy. As revealed by the data of the NMR spectra, both polysaccharides along with the usual fucosyl branches contained rare disaccharide branches α-D-GalNAc4S6R-(1→2)-α-L-Fuc3S4R → attached to O-3 of the GlcA of the backbone (R = H or SO3-). The polysaccharides were studied as stimulators of hematopoiesis in vitro using mice bone marrow cells as the model. The studied polysaccharides were shown to be able to directly stimulate the proliferation of various progenitors of myelocytes and megakaryocytes as well as lymphocytes and mesenchymal cells in vitro. Therefore, the new fucosylated chondroitin sulfates can be regarded as prototype structures for the further design of GMP-compatible synthetic analogs for the development of new-generation hematopoiesis stimulators.

2.
Mol Pharm ; 20(10): 4994-5005, 2023 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-37733943

RESUMEN

Rhizochalinin (Rhiz) is a recently discovered cytotoxic sphingolipid synthesized from the marine natural compound rhizochalin. Previously, Rhiz demonstrated high in vitro and in vivo efficacy in various cancer models. Here, we report Rhiz to be highly active in human glioblastoma cell lines as well as in patient-derived glioma-stem like neurosphere models. Rhiz counteracted glioblastoma cell proliferation by inducing apoptosis, G2/M-phase cell cycle arrest, and inhibition of autophagy. Proteomic profiling followed by bioinformatic analysis suggested suppression of the Akt pathway as one of the major biological effects of Rhiz. Suppression of Akt as well as IGF-1R and MEK1/2 kinase was confirmed in Rhiz-treated GBM cells. In addition, Rhiz pretreatment resulted in a more pronounced inhibitory effect of γ-irradiation on the growth of patient-derived glioma-spheres, an effect to which the Akt inhibition may also contribute decisively. In contrast, EGFR upregulation, observed in all GBM neurospheres under Rhiz treatment, was postulated to be a possible sign of incipient resistance. In line with this, combinational therapy with EGFR-targeted tyrosine kinase inhibitors synergistically increased the efficacy of Rhiz resulting in dramatic inhibition of GBM cell viability as well as a significant reduction of neurosphere size in the case of combination with lapatinib. Preliminary in vitro data generated using a parallel artificial membrane permeability (PAMPA) assay suggested that Rhiz cannot cross the blood brain barrier and therefore alternative drug delivery methods should be used in the further in vivo studies. In conclusion, Rhiz is a promising new candidate for the treatment of human glioblastoma, which should be further developed in combination with EGFR inhibitors.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteómica , Apoptosis , Proliferación Celular , Receptores ErbB , Línea Celular Tumoral , Neoplasias Encefálicas/tratamiento farmacológico
3.
Mar Drugs ; 21(8)2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37623708

RESUMEN

Microalgae are abundant components of the biosphere rich in low molecular weight carbohydrate-containing natural products (glycoconjugates). Glycoconjugates take part in the processes of photosynthesis, provide producers with important biological molecules, influence other organisms and are known by their biological activities. Some of them, for example, glycosylated toxins and arsenicals, are detrimental and can be transferred via food chains into higher organisms, including humans. So far, the studies on a series of particular groups of microalgal glycoconjugates were not comprehensively discussed in special reviews. In this review, a special focus is given to glycoconjugates' isolation, structure determination, properties and approaches to search for new bioactive metabolites. Analysis of literature data concerning structures, functions and biological activities of ribosylated arsenicals, galactosylated and sulfoquinovosylated lipids, phosphoglycolipids, glycoside derivatives of toxins, and other groups of glycoconjugates was carried out and discussed. Recent studies were fundamental in the discovery of a great variety of new carbohydrate-containing metabolites and their biological activities in defining the role of microalgal viral infections in regulating microalgal blooms as well as in the detection of glycoconjugates with potent immunomodulatory properties. Those discoveries support growing interest in these molecules.


Asunto(s)
Arsenicales , Microalgas , Humanos , Peso Molecular , Glicósidos , Fotosíntesis
4.
J Nat Prod ; 86(8): 2073-2078, 2023 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-37535457

RESUMEN

Assimiloside A (1), an unprecedented marine glycolipid containing a γ-lactone of 4R,16,26R-trihydroxy C28 fatty acid as an aglycon and a trisaccharide carbohydrate moiety, was isolated from the marine sponge Hymeniacidon assimilis. Its structure was elucidated by NMR spectroscopy, mass spectrometry, chemical transformations, and ECD spectroscopy combined with time-dependent density functional theory calculations. Assimiloside A at nontoxic concentrations of 0.01-0.1 µM was shown to present lysosomal activity stimulation and intracellular reactive oxygen species level elevation in RAW 264.7 murine macrophages.


Asunto(s)
Glucolípidos , Poríferos , Animales , Ratones , Glucolípidos/farmacología , Poríferos/química , Espectroscopía de Resonancia Magnética , Ácidos Grasos , Estructura Molecular
5.
Metabolites ; 13(7)2023 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-37512490

RESUMEN

Sea cucumber triterpene glycosides are a class of secondary metabolites that possess distinctive chemical structures and exhibit a variety of biological and pharmacological activities. The application of MS-based approaches for the study of triterpene glycosides allows rapid evaluation of the structural diversity of metabolites in complex mixtures. However, the identification of the detected triterpene glycosides can be challenging. The objective of this study is to establish the first spectral library containing the mass spectra of sea cucumber triterpene glycosides using ultraperformance liquid chromatography-quadrupole time-of-flight mass spectrometry. The library contains the electrospray ionization tandem mass spectra and retention times of 191 triterpene glycosides previously isolated from 15 sea cucumber species and one starfish at the Laboratory of the Chemistry of Marine Natural Products of the G.B. Elyakov Pacific Institute of Bioorganic Chemistry. In addition, the chromatographic behavior and some structure-related neutral losses in tandem MS are discussed. The obtained data will accelerate the accurate dereplication of known triterpene glycosides and the annotation of novel compounds, as we demonstrated by the processing of LC-MS/MS data of Eupentacta fraudatrix extract.

6.
Int J Mol Sci ; 24(13)2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37446305

RESUMEN

Seven new monosulfated triterpene glycosides, djakonoviosides A (1), A1 (2), A2 (3), and B1-B4 (4-7), along with three known glycosides found earlier in the other Cucumaria species, namely okhotoside A1-1, cucumarioside A0-1, and frondoside D, have been isolated from the far eastern sea cucumber Cucumaria djakonovi (Cucumariidae, Dendrochirotida). The structures were established on the basis of extensive analysis of 1D and 2D NMR spectra and confirmed by HR-ESI-MS data. The compounds of groups A and B differ from each other in their carbohydrate chains, namely monosulfated tetrasaccharide chains are inherent to group A and pentasaccharide chains with one sulfate group, branched by C-2 Qui2, are characteristic of group B. The aglycones of djakonoviosides A2 (3), B2 (5), and B4 (7) are characterized by a unique structural feature, a 23,16-hemiketal fragment found first in the sea cucumbers' glycosides. The biosynthetic pathway of its formation is discussed. The set of aglycones of C. djakonovi glycosides was species specific because of the presence of new aglycones. At the same time, the finding in C. djakonovi of the known glycosides isolated earlier from the other species of Cucumaria, as well as the set of carbohydrate chains characteristic of the glycosides of all investigated representatives of the genus Cucumaria, demonstrated the significance of these glycosides as chemotaxonomic markers. The membranolytic actions of compounds 1-7 and known glycosides okhotoside A1-1, cucumarioside A0-1, and frondoside D, isolated from C. djakonovi against human cell lines, including erythrocytes and breast cancer cells (MCF-7, T-47D, and triple negative MDA-MB-231), as well as leukemia HL-60 and the embryonic kidney HEK-293 cell line, have been studied. Okhotoside A1-1 was the most active compound from the series because of the presence of a tetrasaccharide linear chain and holostane aglycone with a 7(8)-double bond and 16ß-O-acetoxy group, cucumarioside A0-1, having the same aglycone, was slightly less active because of the presence of branching xylose residue at C-2 Qui2. Generally, the activity of the djakonoviosides of group A was higher than that of the djakonoviosides of group B containing the same aglycones, indicating the significance of a linear chain containing four monosaccharide residues for the demonstration of membranolytic action by the glycosides. All the compounds containing hemiketal fragments, djakonovioside A2 (3), B2 (5), and B4 (7), were almost inactive. The most aggressive triple-negative MDA-MB-231 breast cancer cell line was the most sensitive to the glycosides action when compared with the other cancer cells. Okhotoside A1-1 and cucumarioside A0-1 demonstrated promising effects against MDA-MB-231 cells, significantly inhibiting the migration, as well as the formation and growth, of colonies.


Asunto(s)
Neoplasias de la Mama , Cucumaria , Pepinos de Mar , Triterpenos , Animales , Humanos , Femenino , Cucumaria/química , Pepinos de Mar/química , Neoplasias de la Mama/tratamiento farmacológico , Células HEK293 , Glicósidos/farmacología , Glicósidos/química , Triterpenos/farmacología , Triterpenos/química , Estructura Molecular
7.
Biomed Pharmacother ; 162: 114589, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37004327

RESUMEN

Echinochrome A, a natural naphthoquinone pigment found in sea urchins, is increasingly being investigated for its nutritional and therapeutic value associated with antioxidant, anticancer, antiviral, antidiabetic, and cardioprotective activities. Although several studies have demonstrated the biological effects and therapeutic potential of echinochrome A, little is known regarding its biopharmaceutical behaviors. Here, we aimed to investigate the physicochemical properties and metabolic profiles of echinochrome A and establish a physiologically-based pharmacokinetic (PBPK) model as a useful tool to support its clinical applications. We found that the lipophilicity, color variability, ultraviolet/visible spectrometry, and stability of echinochrome A were markedly affected by pH conditions. Moreover, metabolic and pharmacokinetic profiling studies demonstrated that echinochrome A is eliminated primarily by hepatic metabolism and that four possible metabolites, i.e., two glucuronidated and two methylated conjugates, are formed in rat and human liver preparations. A whole-body PBPK model incorporating the newly identified hepatic phase II metabolic process was constructed and optimized with respect to chemical-specific parameters. Furthermore, model simulations suggested that echinochrome A could exhibit linear disposition profiles without systemic and local tissue accumulation in clinical settings. Our proposed PBPK model of echinochrome A could be a valuable tool for predicting drug interactions in previously unexplored scenarios and for optimizing dosage regimens and drug formulations.


Asunto(s)
Naftoquinonas , Humanos , Ratas , Animales , Naftoquinonas/uso terapéutico , Antioxidantes , Interacciones Farmacológicas , Erizos de Mar/metabolismo , Modelos Biológicos
8.
Mar Drugs ; 21(4)2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-37103361

RESUMEN

Echinochrome A (EchA) is a natural bioproduct extracted from sea urchins, and is an active component of the clinical drug, Histochrome®. EchA has antioxidant, anti-inflammatory, and antimicrobial effects. However, its effects on diabetic nephropathy (DN) remain poorly understood. In the present study, seven-week-old diabetic and obese db/db mice were injected with Histochrome (0.3 mL/kg/day; EchA equivalent of 3 mg/kg/day) intraperitoneally for 12 weeks, while db/db control mice and wild-type (WT) mice received an equal amount of sterile 0.9% saline. EchA improved glucose tolerance and reduced blood urea nitrogen (BUN) and serum creatinine levels but did not affect body weight. In addition, EchA decreased renal malondialdehyde (MDA) and lipid hydroperoxide levels, and increased ATP production. Histologically, EchA treatment ameliorated renal fibrosis. Mechanistically, EchA suppressed oxidative stress and fibrosis by inhibiting protein kinase C-iota (PKCι)/p38 mitogen-activated protein kinase (MAPK), downregulating p53 and c-Jun phosphorylation, attenuating NADPH oxidase 4 (NOX4), and transforming growth factor-beta 1 (TGFß1) signaling. Moreover, EchA enhanced AMPK phosphorylation and nuclear factor erythroid-2-related factor 2 (NRF2)/heme oxygenase 1 (HO-1) signaling, improving mitochondrial function and antioxidant activity. Collectively, these findings demonstrate that EchA prevents DN by inhibiting PKCι/p38 MAPK and upregulating the AMPKα/NRF2/HO-1 signaling pathways in db/db mice, and may provide a therapeutic option for DN.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Ratones , Animales , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/prevención & control , Nefropatías Diabéticas/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Riñón , Estrés Oxidativo , Antioxidantes/metabolismo , Ratones Endogámicos , Mitocondrias , Diabetes Mellitus/tratamiento farmacológico
9.
Mar Drugs ; 21(2)2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36827119

RESUMEN

Echinochrome A (Ech A), a naphthoquinoid pigment from sea urchins, is known to have anti-inflammatory and analgesic effects that have been suggested to be mediated by antioxidant activity and intracellular signaling modulation. In addition to these mechanisms, the ion channels in keratinocytes, immune cells, and nociceptive neurons may be the target for the pharmacological effects. Here, using the patch clamp technique, we investigated the effects of Ech A on the Ca2+-permeable TRPV3, TRPV1 and Orai1 channels and the two-pore domain K+ (K2P) channels (TREK/TRAAK, TASK-1, and TRESK) overexpressed in HEK 293 cells. Ech A inhibited both the TRPV3 and Orai1 currents, with IC50 levels of 2.1 and 2.4 µM, respectively. The capsaicin-activated TRPV1 current was slightly augmented by Ech A. Ech A alone did not change the amplitude of the TREK-2 current (ITREK2), but pretreatments with Ech A markedly facilitated ITREK2 activation by 2-APB, arachidonic acid (AA), and acidic extracellular pH (pHe). Similar facilitation effects of Ech A on TREK-1 and TRAAK were observed when they were stimulated with 2-APB and AA, respectively. On the contrary, Ech A did not affect the TRESK and TASK-1 currents. Interestingly, the ITREK2 maximally activated by the combined application of 2-APB and Ech A was not inhibited by norfluoxetine but was still completely inhibited by ruthenium red. The selective loss of sensitivity to norfluoxetine suggested an altered molecular conformation of TREK-2 by Ech A. We conclude that the Ech A-induced inhibition of the Ca2+-permeable cation channels and the facilitation of the TREK/TRAAK K2P channels may underlie the analgesic and anti-inflammatory effects of Ech A.


Asunto(s)
Naftoquinonas , Humanos , Células HEK293 , Fenómenos Fisiológicos de la Piel
10.
Mar Drugs ; 21(1)2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36662225

RESUMEN

Abnormal sulfide catabolism, especially the accumulation of hydrogen sulfide (H2S) during hypoxic or inflammatory stresses, is a major cause of redox imbalance-associated cardiac dysfunction. Polyhydroxynaphtoquinone echinochrome A (Ech-A), a natural pigment of marine origin found in the shells and needles of many species of sea urchins, is a potent antioxidant and inhibits acute myocardial ferroptosis after ischemia/reperfusion, but the chronic effect of Ech-A on heart failure is unknown. Reactive sulfur species (RSS), which include catenated sulfur atoms, have been revealed as true biomolecules with high redox reactivity required for intracellular energy metabolism and signal transduction. Here, we report that continuous intraperitoneal administration of Ech-A (2.0 mg/kg/day) prevents RSS catabolism-associated chronic heart failure after myocardial infarction (MI) in mice. Ech-A prevented left ventricular (LV) systolic dysfunction and structural remodeling after MI. Fluorescence imaging revealed that intracellular RSS level was reduced after MI, while H2S/HS- level was increased in LV myocardium, which was attenuated by Ech-A. This result indicates that Ech-A suppresses RSS catabolism to H2S/HS- in LV myocardium after MI. In addition, Ech-A reduced oxidative stress formation by MI. Ech-A suppressed RSS catabolism caused by hypoxia in neonatal rat cardiomyocytes and human iPS cell-derived cardiomyocytes. Ech-A also suppressed RSS catabolism caused by lipopolysaccharide stimulation in macrophages. Thus, Ech-A has the potential to improve chronic heart failure after MI, in part by preventing sulfide catabolism.


Asunto(s)
Insuficiencia Cardíaca , Infarto del Miocardio , Disfunción Ventricular Izquierda , Humanos , Ratones , Ratas , Animales , Infarto del Miocardio/tratamiento farmacológico , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/etiología , Insuficiencia Cardíaca/prevención & control , Miocardio/metabolismo , Sulfuros/metabolismo , Disfunción Ventricular Izquierda/etiología , Disfunción Ventricular Izquierda/prevención & control , Azufre
11.
Mar Drugs ; 22(1)2023 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-38248644

RESUMEN

Six previously unknown triterpene glycosides, pacificusosides L-Q (1-6), and two previously known triterpene glycosides, cucumariosides B1 (7) and A5 (8), were isolated from an alcoholic extract of Pacific sun star, Solaster pacificus. The structures of 1-6 were determined using 1D and 2D NMR, ESIMS, and chemical modifications. Compound 1 is a rare type of triterpene glycoside with non-holostane aglycon, having a linear trisaccharide carbohydrate chain. Pacificusosides M-P (2-5) have new structures containing a Δ8(9)-3,16,18-trihydroxy tetracyclic triterpene moiety. This tetracyclic fragment in sea star or sea cucumber triterpene glycosides was described for the first time. All the compounds under study exhibit low or moderate cytotoxic activity against colorectal carcinoma HCT 116 cells, and breast cancer MDA-MB-231 cells were assessed by MTS assay. Compound 2 effectively suppresses the colony formation of cancer cells at a non-toxic concentration, using the soft-agar assay. A scratch assay has shown a significant anti-invasive potential of compound 2 against HCT 116 cells, but not against MDA-MB-231 cells.


Asunto(s)
Neoplasias Colorrectales , Glicósidos , Humanos , Glicósidos/farmacología , Bioensayo , Células HCT116 , Proyectos de Investigación
12.
Mar Drugs ; 20(12)2022 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-36547876

RESUMEN

Post-menopausal dry mouth or xerostomia is caused by reduced salivary secretion. This study aimed to investigate the efficacy of echinochrome A (Ech A) in alleviating submandibular gland dysfunctions in ovariectomized rats that mimic menopause. Female rats that were eight-weeks-old were randomly divided into SHAM-6, -12; OVX-6, -12; and ECH-6, -12 groups (consisting of 6- and 12-weeks post-sham-operated, ovariectomized, and Ech A-treated ovariectomized rats, respectively). The ECH groups had lower body weight than OVX but similar food intake and estradiol or estrogen receptor ß expression. However, the ECH groups had lower mRNA expression of sterol-regulatory element binding protein-1c (Srebp-1c), acetyl-CoA carboxylase (Acc), fatty acid synthase (Fasn), cluster of differentiation 36 (Cd36), and lipid vacuole deposition than OVX mice. Moreover, reactive oxygen species (ROS), malondialdehyde (MDA), and iron accumulation were lower in the ECH than in the OVX groups. Fibrosis markers, transforming growth factor ß (Tgf-ßI and Tgf-ßII mRNA) increased in the OVX than SHAM groups but decreased in the ECH groups. Aquaporin (Aqp-1 and Aqp-5 mRNA) and mucin expressions were downregulated in the OVX groups but improved with Ech A. In addition, Ech A prevented post-menopausal salivary gland dysfunction by inhibiting lipogenesis and ferroptosis. These findings suggest Ech A as an effective remedy for treating menopausal dry mouth.


Asunto(s)
Estrógenos , Xerostomía , Animales , Femenino , Ratones , Ratas , Estradiol , Estrógenos/farmacología , Ovariectomía , Ratas Sprague-Dawley , ARN Mensajero , Glándula Submandibular
13.
Mar Drugs ; 20(12)2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36547903

RESUMEN

Endothelial-mesenchymal transition (EndMT) is a process by which endothelial cells (ECs) transition into mesenchymal cells (e.g., myofibroblasts and smooth muscle cells) and induce fibrosis of cells/tissues, due to ischemic conditions in the heart. Previously, we reported that echinochrome A (EchA) derived from sea urchin shells can modulate cardiovascular disease by promoting anti-inflammatory and antioxidant activity; however, the mechanism underlying these effects was unclear. We investigated the role of EchA in the EndMT process by treating human umbilical vein ECs (HUVECs) with TGF-ß2 and IL-1ß, and confirmed the regulation of cell migration, inflammatory, oxidative responses and mitochondrial dysfunction. Moreover, we developed an EndMT-induced myocardial infarction (MI) model to investigate the effect of EchA in vivo. After EchA was administered once a day for a total of 3 days, the histological and functional improvement of the myocardium was investigated to confirm the control of the EndMT. We concluded that EchA negatively regulates early or inflammation-related EndMT and reduces the myofibroblast proportion and fibrosis area, meaning that it may be a potential therapy for cardiac regeneration or cardioprotection from scar formation and cardiac fibrosis due to tissue granulation. Our findings encourage the study of marine bioactive compounds for the discovery of new therapeutics for recovering ischemic cardiac injuries.


Asunto(s)
Transición Epitelial-Mesenquimal , Transducción de Señal , Humanos , Células Cultivadas , Células Endoteliales de la Vena Umbilical Humana , Fibrosis , Inflamación/tratamiento farmacológico , Inflamación/patología
14.
Mar Drugs ; 20(11)2022 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-36421992

RESUMEN

The diverse therapeutic feasibility of the sea urchin-derived naphthoquinone pigment, Echinochrome A (Ech A), has been studied. Simple and noninvasive administration routes should be explored, to obtain the feasibility. Although the therapeutic potential has been proven through several preclinical studies, the biosafety of orally administered Ech A and its direct influence on intestinal cells have not been evaluated. To estimate the bioavailability of Ech A as an oral administration drug, small intestinal and colonic epithelial organoids were developed from mice and humans. The morphology and cellular composition of intestinal organoids were evaluated after Ech A treatment. Ech A treatment significantly increased the expression of LGR5 (~2.38-fold change, p = 0.009) and MUC2 (~1.85-fold change, p = 0.08). Notably, in the presence of oxidative stress, Ech A attenuated oxidative stress up to 1.8-fold (p = 0.04), with a restored gene expression of LGR5 (~4.11-fold change, p = 0.0004), as well as an increased expression of Ly6a (~3.51-fold change, p = 0.005) and CLU (~2.5-fold change, p = 0.01), markers of revival stem cells. In conclusion, Ech A is harmless to intestinal tissues; rather, it promotes the maintenance and regeneration of the intestinal epithelium, suggesting possible beneficial effects on the intestine when used as an oral medication.


Asunto(s)
Mucosa Intestinal , Naftoquinonas , Humanos , Ratones , Animales , Naftoquinonas/farmacología , Naftoquinonas/uso terapéutico , Intestinos , Colon
15.
Mar Drugs ; 20(11)2022 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-36421999

RESUMEN

We aimed to observe the effects of Echinochrome A (Ech A) on systemic changes using a rat model of preeclampsia. The results showed that an infusion of angiotensin II (Ang II) through an osmotic pump (1 µg/kg/min) on GD 8 increased systolic and diastolic blood pressures and reduced fetal weight and placental weight. The diameters of the glomeruli were expended and glomeruli capillaries were diminished. No change was observed in the heart and liver in the Ang II group, but epithelial structures were disrupted in the uterus. Ech A treatment on GD 14 (100 µg/µL) through the jugular vein reduced systolic and diastolic blood pressures and reversed glomerulus alterations, but the fetal or placental parameters were unaffected. Ech A only partly reversed the effect on the uterus. The mRNA expression of TNF-α was increased and IL-10 and VEGF were reduced in the uterus of the Ang II group, while Ech A restored these changes. A similar trend was observed in the kidney, liver, and heart of this group. Furthermore, Bcl-2 was reduced and Bcl-2/Bax ratios were significantly reduced in the kidney and heart of the Ang II group, while Ech A reversed these changes. We suggest that Ech A modulates inflammation and apoptosis in key systemic organs in Ang II-induced rat preeclampsia and preserves kidney and uterus structures and reduces blood pressure.


Asunto(s)
Preeclampsia , Femenino , Embarazo , Ratas , Animales , Humanos , Presión Sanguínea , Preeclampsia/tratamiento farmacológico , Placenta , Riñón , Angiotensina II , Proteínas Proto-Oncogénicas c-bcl-2
16.
Mar Drugs ; 20(9)2022 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-36135744

RESUMEN

Excessive increase in melanin pigment in the skin can be caused by a variety of environmental factors, including UV radiation, and can result in spots, freckles, and skin cancer. Therefore, it is important to develop functional whitening cosmetic reagents that regulate melanogenesis. In this study, we investigated the effects of echinochrome A (Ech A) on melanogenesis in the B16F10 murine melanoma cell line. We triggered B16F10 cells using α-MSH under Ech A treatment to observe melanin synthesis and analyze expression changes in melanogenesis-related enzymes (tyrosinase, tyrosinase-related protein 1 (TYRP1), and tyrosinase-related protein 2 (TYRP2)) at the mRNA and protein levels. Furthermore, we measured expression changes in the microphthalmia-associated transcription factor (MITF), CREB, and pCREB proteins. Melanin synthesis in the cells stimulated by α-MSH was significantly reduced by Ech A. The expression of the tyrosinase, TYRP1, and TYRP2 mRNA and proteins was significantly decreased by Ech A, as was that of the MITF, CREB, and pCREB proteins. These results show that Ech A suppresses melanin synthesis by regulating melanogenesis-related enzymes through the CREB signaling pathway and suggest the potential of Ech A as a functional agent to prevent pigmentation and promote skin whitening.


Asunto(s)
Proteína de Unión a Elemento de Respuesta al AMP Cíclico , Melanoma Experimental , Naftoquinonas , Animales , Línea Celular Tumoral , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Melaninas , Ratones , Factor de Transcripción Asociado a Microftalmía/genética , Factor de Transcripción Asociado a Microftalmía/metabolismo , Monofenol Monooxigenasa/metabolismo , Naftoquinonas/farmacología , ARN Mensajero , Transducción de Señal , alfa-MSH/farmacología
17.
Sci Rep ; 12(1): 13570, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35945234

RESUMEN

Spongian diterpenes are a group of marine natural compounds possessing various biological activities. However, their anticancer activity is still poorly studied and understood. We isolated six spongian diterpenes from the marine sponge Spongionella sp., including one new spongionellol A and five previously known molecules. The structures were elucidated using a detailed analysis MS and NMR spectra as well as by comparison with previously reported data. Two of them, namely, spongionellol A and 15,16-dideoxy-15α,17ß-dihydroxy-15,17-oxidospongian-16-carboxylate-15,17-diacetate exhibited high activity and selectivity in human prostate cancer cells, including cells resistant to hormonal therapy and docetaxel. The mechanism of action has been identified as caspase-dependent apoptosis. Remarkably, both compounds were able to suppress expression of androgen receptor (AR) and AR-splice variant 7, as well as AR-dependent signaling. The isolated diterpenes effectively inhibited drug efflux mediated by multidrug-resistance protein 1 (MDR1; p-glycoprotein). Of note, a synergistic effect of the compounds with docetaxel, a substrate of p-glycoprotein, suggests resensitization of p-glycoprotein overexpressing cells to standard chemotherapy. In conclusion, the isolated spongian diterpenes possess high activity and selectivity towards prostate cancer cells combined with the ability to inhibit one of the main drug-resistance mechanism. This makes them promising candidates for combinational anticancer therapy.


Asunto(s)
Diterpenos , Poríferos , Neoplasias de la Próstata , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Animales , Diterpenos/química , Docetaxel/farmacología , Resistencia a Medicamentos , Humanos , Masculino , Estructura Molecular , Poríferos/metabolismo , Neoplasias de la Próstata/tratamiento farmacológico
18.
Mar Drugs ; 20(7)2022 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-35877702

RESUMEN

The cytotoxicity-bioassay-guided fractionation of the ethanol extract from the marine sponge Guitarra abbotti, whose 1-O-alkyl-sn-glycerol ethers (AGEs) have not been investigated so far, led to the isolation of a complex lipid fraction containing, along with previously known compounds, six new lipids of the AGE type. The composition of the AGE fraction as well as the structures of 6 new and 22 previously known compounds were established using 1H and 13C NMR, GC/MS, and chemical conversion methods. The new AGEs were identified as: 1-O-(Z-docos-15-enyl)-sn-glycerol (1), 1-O-(Z-docos-17-enyl)-sn-glycerol (2), 1-O-(Z-tricos-15-enyl)-sn-glycerol (3), 1-O-(Z-tricos-16-enyl)-sn-glycerol (4), 1-O-(Z-tricos-17-enyl)-sn-glycerol (5), and 1-O-(Z-tetracos-15-enyl)-sn-glycerol (6). The isolated AGEs show weak cytotoxic activity in THP-1, HL-60, HeLa, DLD-1, SNU C4, SK-MEL-28, and MDA-MB-231 human cancer cells. A further cytotoxicity analysis in JB6 P+ Cl41 cells bearing mutated MAP kinase genes revealed that ERK2 and JNK1 play a cytoprotective role in the cellular response to the AGE-induced cytotoxic effects.


Asunto(s)
Éteres , Poríferos , Animales , Éteres/farmacología , Cromatografía de Gases y Espectrometría de Masas , Glicerol/farmacología , Éteres de Glicerilo/farmacología , Humanos
19.
Org Lett ; 24(27): 4892-4895, 2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35770905

RESUMEN

The bacterium Streptomyces sp. KMM 9044 from a sample of marine sediment collected in the northwestern part of the Sea of Japan produces highly chlorinated depsiheptapeptides streptocinnamides A (1) and B (2), representatives of a new structural group of antibiotics. The structures of 1 and 2 were determined using nuclear magnetic resonance and mass spectrometry studies and confirmed by a series of chemical transformations. Streptocinnamide A potently inhibits Micrococcus sp. KMM 1467, Arthrobacter sp. ATCC 21022, and Mycobacterium smegmatis MC2 155.


Asunto(s)
Depsipéptidos , Streptomyces , Antibacterianos/farmacología , Depsipéptidos/química , Sedimentos Geológicos/microbiología , Japón , Filogenia , Streptomyces/química
20.
J Nat Prod ; 85(4): 1186-1191, 2022 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-35377646

RESUMEN

Toporosides A-D (1-4), new ω-glycosylated fatty acid amides, were isolated from the sponge Stelodoryx toporoki. The structures of these compounds, including absolute configurations of stereogenic centers, were established using analysis of 1D and 2D NMR, ECD, and HR mass spectra as well as chemical transformations. Toporosides A (1) and B (2) are the first lipids containing a cyclopentenyl α,ß-unsaturated carbonyl moiety in the polymethylene chain. Toporoside C (3) is likely a precursor, which undergoes intramolecular aldol condensation to produce 1 and 2. Toporosides A, C, and D showed protective effects against TNF-α-induced injury in H9c2 cardiomyocytes.


Asunto(s)
Amidas , Poríferos , Amidas/química , Animales , Ácidos Grasos/química , Espectroscopía de Resonancia Magnética , Estructura Molecular , Poríferos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA