Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Stress ; 23(2): 125-135, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31347429

RESUMEN

People who are exposed to life-threatening trauma are at risk of developing posttraumatic stress disorder (PTSD). In addition to psychological manifestations, PTSD is associated with an increased risk of myocardial infarction, arrhythmias, hypertension, and other cardiovascular problems. We previously reported that rats exposed to a predator-based model of PTSD develop myocardial hypersensitivity to ischemic injury. This study characterized cardiac changes in histology and gene expression in rats exposed this model. Male rats were subjected to two cat exposures (separated by a period of 10 d) and daily cage-mate changes for 31 d. Control rats were not exposed to the cat or cage-mate changes. Ventricular tissue was analyzed by RNA sequencing, western blotting, histology, and immunohistochemistry. Multifocal lesions characterized by necrosis, mononuclear cell infiltration, and collagen deposition were observed in hearts from all stressed rats but none of the control rats. Gene expression analysis identified clusters of upregulated genes associated with endothelial to mesenchymal transition, endothelial migration, mesenchyme differentiation, and extracellular matrix remodeling in hearts from stressed rats. Consistent with endothelial to mesenchymal transition, rats from stressed hearts exhibited increased expression of α-smooth muscle actin (a myofibroblast marker) and a decrease in the number of CD31 positive endothelial cells. These data provide evidence that predator-based stress induces myocardial lesions and reprograming of cardiac gene expression. These changes may underlie the myocardial hypersensitivity to ischemia observed in these animals. This rat model may provide a useful tool for investigating the cardiac impact of PTSD and other forms of chronic psychological stress.Lay summaryChronic predator stress induces the formation of myocardial lesions characterized by necrosis, collagen deposition, and mononuclear cell infiltration. This is accompanied by changes in gene expression and histology that are indicative of cardiac remodeling. These changes may underlie the increased risk of arrhythmias, myocardial infarction, and other cardiac pathologies in people who have PTSD or other forms of chronic stress.


Asunto(s)
Trastornos por Estrés Postraumático , Animales , Gatos , Modelos Animales de Enfermedad , Células Endoteliales , Fibrosis , Inflamación/genética , Masculino , Ratas , Trastornos por Estrés Postraumático/genética , Estrés Psicológico/genética , Transcriptoma
2.
Horm Behav ; 115: 104564, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31421075

RESUMEN

Traumatized women are more likely than traumatized men to develop post-traumatic stress disorder (PTSD). Still, the inclusion of females in animal models of PTSD has largely been avoided, likely due to the variable hormone profile of female rodents. Because a valid animal model of PTSD that incorporates females is still needed, we examined the influence of estrous stage and ovarian hormones on the female rat response to a predator-based psychosocial stress model of PTSD. Female Sprague-Dawley rats were exposed to psychosocial stress or control conditions for 31 days. Stressed rats were given two cat exposures and daily social instability; control rats were handled daily. Beginning on Day 32, rats underwent physiological or behavioral testing. In Experiment 1, vaginal smears were collected on days of the first and second cat exposures and each day of behavioral testing to determine estrous stage. In Experiments 2 and 3, ovariectomized or sham control rats were exposed to stress or control conditions. Then, they were given behavioral testing (Exp 2), or their hearts were isolated and subjected to ischemia/reperfusion on a Langendorff isolated heart system (Exp 3). Chronic stress increased anxiety-like behavior, irrespective of estrous stage or ovariectomy condition. Ovariectomized females displayed greater startle responses and anxiety-like behavior than sham rats. Stress had no impact on myocardial sensitivity to ischemic injury; however, ovariectomized females exhibited greater ischemia-induced infarction than sham rats. These findings suggest that ovarian hormones may prevent anxiety-like behavior and be cardioprotective in non-stressed controls, but they do not interact with chronic stress to influence the development of PTSD-like sequelae in female rats.


Asunto(s)
Ansiedad , Conducta Animal/fisiología , Ciclo Estral/fisiología , Ovariectomía , Reflejo de Sobresalto , Trastornos por Estrés Postraumático , Estrés Psicológico , Animales , Ansiedad/etiología , Ansiedad/metabolismo , Ansiedad/fisiopatología , Modelos Animales de Enfermedad , Ciclo Estral/metabolismo , Femenino , Ratas , Ratas Sprague-Dawley , Reflejo de Sobresalto/fisiología , Trastornos por Estrés Postraumático/etiología , Trastornos por Estrés Postraumático/metabolismo , Trastornos por Estrés Postraumático/fisiopatología , Estrés Psicológico/complicaciones , Estrés Psicológico/metabolismo , Estrés Psicológico/fisiopatología
3.
Physiol Behav ; 195: 9-19, 2018 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-30036561

RESUMEN

There is a need to identify new therapeutic targets for the treatment of cocaine addiction due to the rise in cocaine abuse and deaths due to cocaine overdose. Regulator of G protein signaling (RGS) proteins such as RGS2 and RGS4 are widely distributed in brain regions that play a role in drug reward. Importantly, RGS2 and RGS4 negatively regulate G-protein coupled receptor signaling pathways of monoaminergic neurotransmitters that play a role in the rewarding effects of cocaine by enhancing the rate of hydrolysis of Gα-bound guanine nucleotide triphosphate. Thus, the objective of this study was to investigate the effects of cocaine on conditioned place preference (CPP) and locomotor activity in mice that lacked either RGS2 or RGS4 (i.e. knockout (KO) mice) and their wildtype (WT) littermates. Moreover recent studies have reported influence of sex on RGS functioning and hence studies were conducted in both male and female mice. Cocaine-induced CPP was attenuated in male, but not female RGS4 KO mice compared to respective RGS4 WT mice. Cocaine-induced CPP was not influenced by deletion of RGS2 in either male or female mice. Similarly, cocaine-induced locomotor activity was not influenced by deletion of either RGS2 or RGS4 irrespective of sex. Together, the data indicate that the rewarding effects of cocaine were attenuated in the absence of RGS4 expression, but not in the absence of RGS2 expression in a sex-dependent manner. Importantly, these data suggest that RGS4 can serve as a potential target for medications that can be used to treat cocaine addiction.


Asunto(s)
Trastornos Relacionados con Cocaína/metabolismo , Trastornos Relacionados con Cocaína/psicología , Proteínas RGS/metabolismo , Recompensa , Animales , Cocaína/farmacología , Condicionamiento Psicológico/efectos de los fármacos , Condicionamiento Psicológico/fisiología , Inhibidores de Captación de Dopamina/farmacología , Femenino , Masculino , Ratones Noqueados , Actividad Motora/efectos de los fármacos , Actividad Motora/fisiología , Proteínas RGS/genética , Factores Sexuales , Conducta Espacial/efectos de los fármacos , Conducta Espacial/fisiología
4.
PLoS One ; 12(6): e0179129, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28575091

RESUMEN

BACKGROUND: We previously reported that adult female, but not male rats that were prenatally exposed to methamphetamine exhibit myocardial hypersensitivity to ischemic injury. However, it is unknown whether hypersensitivity to ischemic injury develops when rats are exposed to methamphetamine during adulthood. The goal of this study was to determine whether methamphetamine exposure during adulthood sensitizes the heart to ischemic injury. METHODS: Adult male and female rats received daily injections of methamphetamine (5 mg/kg) or saline for 10 days. Their hearts were isolated on day 11 and subjected to a 20 min ischemic insult on a Langendorff isolated heart apparatus. Cardiac contractile function was measured by an intraventricular balloon, and infarct size was measured by triphenyltetrazolium chloride staining. RESULTS: Hearts from methamphetamine-treated females exhibited significantly larger infarcts and suppressed postischemic recovery of contractile function compared to hearts from saline-treated females. In contrast, methamphetamine had no effect on infarct size or contractile recovery in male hearts. Subsequent experiments demonstrated that hypersensitivity to ischemic injury persisted in female hearts following a 1 month period of abstinence from methamphetamine. Myocardial protein kinase C-ε expression, Akt phosphorylation, and ERK phosphorylation were unaffected by adult exposure to methamphetamine. CONCLUSIONS: Exposure of adult rats to methamphetamine sex-dependently increases the extent of myocardial injury following an ischemic insult. These data suggest that women who have a heart attack might be at risk of more extensive myocardial injury if they have a recent history of methamphetamine abuse.


Asunto(s)
Estimulantes del Sistema Nervioso Central/efectos adversos , Corazón/efectos de los fármacos , Corazón/fisiopatología , Metanfetamina/efectos adversos , Infarto del Miocardio/etiología , Isquemia Miocárdica/complicaciones , Animales , Estimulantes del Sistema Nervioso Central/administración & dosificación , Femenino , Masculino , Metanfetamina/administración & dosificación , Contracción Miocárdica/efectos de los fármacos , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Isquemia Miocárdica/patología , Isquemia Miocárdica/fisiopatología , Miocardio/patología , Ratas , Ratas Sprague-Dawley , Factores Sexuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA