Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
ACS Nano ; 18(24): 15915-15924, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38833535

RESUMEN

Considering the increasing demand for high-resolution light-emitting diodes (LEDs), it is important that direct fine patterning technologies for LEDs be developed, especially for quantum-dot LEDs (QLEDs). Traditionally, the patterning of QLEDs relies on resin-based photolithography techniques, requiring multiple steps and causing performance deterioration. Nondestructive direct patterning may provide an easy and stepwise method to achieve fine-pixelated units in QLEDs. In this study, two isomeric tridentate cross-linkers (X8/X9) are presented and can be blended into the hole transport layer (HTL) and the emissive layer (EML) of QLEDs. Because of their photosensitivity, the in situ cross-linking process can be efficiently triggered by ultraviolet irradiation, affording high solvent resistance and nondestructive direct patterning of the layers. Red QLEDs using the cross-linked HTL demonstrate an impressive external quantum efficiency of up to 22.45%. Through lithographic patterning enabled by X9, line patterns of HTL and EML films exhibit widths as narrow as 2 and 4 µm, respectively. Leveraging the patterned HTL and EML, we show the successful fabrication of pixelated QLED devices with an area size of 3 × 3 mm2, alongside the successful production of dual-color pixelated QLED devices. These findings showcase the promising potential of direct patterning facilitated by engineered cross-linkers for the cost-effective fabrication of pixelated QLED displays.

2.
Nanoscale ; 15(45): 18523-18530, 2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-37947012

RESUMEN

ZnO nanocrystals (NCs) are widely employed as an electron transport layer (ETL) in quantum-dot light-emitting diodes (QLEDs). However, the excessive electron mobility, abundant surface defects and poor reproducibility of ZnO NC synthesis are currently the primary restrictive factors influencing the development of QLEDs. In this study, we developed Sn(IV)-doped ZnO NCs as the ETL for constructing highly efficient and long lifetime QLEDs. The introduction of Sn can reduce the surface hydroxyl oxygen defects and alter the electron transport properties of NCs, and thus is beneficial for improving the efficiency of hole-electron recombination in the emitting layer. Meanwhile, a microchannel (MC) reactor is utilized to finely control the synthesis of Zn0.96Sn0.04O NCs, enabling us to achieve uniform size distribution and consistent production reproducibility. Using the Sn(IV)-doped ZnO NCs as the ETL has led to a remarkable enhancement of external quantum efficiency (EQE) for the fabricated red QLED, from 9.2% of the ZnO only device to 15.5% of the Zn0.96Sn0.04O device. Furthermore, the T70 (@1000 cd m-2) of the Zn0.96Sn0.04O device reached 78 h, which is 1.77-fold higher than that of the ZnO only device (44 h). The present work provides an alternative ETL for efficient and stable QLEDs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA