RESUMEN
A facile solution process was employed to prepare CsPbI3 as an anode material for Li-ion batteries. Rietveld refinement of the X-ray data confirms the orthorhombic phase of CsPbI3 at room temperature. As obtained from bond valence calculations, strained bonds between Pb and I are identified within PbI6 octahedral units. Morphological study shows that the as-prepared δ-CsPbI3 forms a nanorod-like structure. The XPS analysis confirm the presence of Cs (3d, 4d), Pb (4d, 4f, 5d) and I (3p, 3d, 4d). The lithiation process involves both intercalation and conversion reactions, as confirmed by cyclic voltammetry (CV) and first-principles calculations. Impedance spectroscopy coupled with the distribution function of relaxation times identifies charge transfer processes due to Li metal foil and anode/electrolyte interfaces. An initial discharge capacity of 151 mAhg-1 is found to continuously increase to reach a maximum of ~275 mAhg-1 at 65 cycles, while it drops to ~240 mAhg-1 at 75 cycles and then slowly decreases to 235 mAhg-1 at 100 cycles. Considering the performance and structural integrity during electrochemical performance, δ-CsPbI3 is a promising material for future Li-ion battery (LIB) application.
RESUMEN
Nitrogen-doped carbon quantum dots (N-CQDs) exhibit a high quantum yield with controllable emission wavelength and intensity in the blue-green regime. N-CQDs were tested and determined to be thermally and optically stable during 150 °C heat treatment and prolonged UV irradiation. Potential applications of N-CQDs were demonstrated, including excellent Fe3+ sensing in aqueous solution, fluorescent polymer fibres, and stealth quick response coding at visible wavelengths.