Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
2.
Mol Ther Nucleic Acids ; 27: 810-823, 2022 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-35141043

RESUMEN

DNA-modifying technologies, such as the CRISPR-Cas9 system, are promising tools in the field of gene and cell therapies. However, high and prolonged expression of DNA-modifying enzymes may cause cytotoxic and genotoxic side effects and is therefore unwanted in therapeutic approaches. Consequently, development of new and potent short-term delivery methods is of utmost importance. Recently, we developed non-integrating gammaretrovirus- and MS2 bacteriophage-based Gag.MS2 (g.Gag.MS2) particles for transient transfer of non-retroviral CRISPR-Cas9 RNA into target cells. In the present study, we further improved the technique by transferring the system to the alpharetroviral vector platform (a.Gag.MS2), which significantly increased CRISPR-Cas9 delivery into target cells and allowed efficient targeted knockout of endogenous TP53/Trp53 genes in primary murine fibroblasts as well as primary human fibroblasts, hepatocytes, and cord-blood-derived CD34+ stem and progenitor cells. Strikingly, co-packaging of Cas9 mRNA and multiple single guide RNAs (sgRNAs) into a.Gag.MS2 chimera displayed efficient targeted knockout of up to three genes. Co-transfection of single-stranded DNA donor oligonucleotides during CRISPR-Cas9 particle production generated all-in-one particles, which mediated up to 12.5% of homology-directed repair in primary cell cultures. In summary, optimized a.Gag.MS2 particles represent a versatile tool for short-term delivery of DNA-modifying enzymes into a variety of target cells, including primary murine and human cells.

3.
Mol Ther ; 24(7): 1216-26, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27138041

RESUMEN

Retroviral engineering of hematopoietic stem cell-derived precursor T-cells (preTs) opens the possibility of targeted T-cell transfer across human leukocyte antigen (HLA)-barriers. Alpharetroviral vectors exhibit a more neutral integration pattern thereby reducing the risk of insertional mutagenesis. Cord blood-derived CD34+ cells were transduced and differentiated into preTs in vitro. Two promoters, elongation-factor-1-short-form, and a myeloproliferative sarcoma virus variant in combination with two commonly used envelopes were comparatively assessed choosing enhanced green fluorescent protein or a third-generation chimeric antigen receptor (CAR) against CD123 as gene of interest. Furthermore, the inducible suicide gene iCaspase 9 has been validated. Combining the sarcoma virus-derived promoter with a modified feline endogenous retrovirus envelope glycoprotein yielded in superior transgene expression and transduction rates. Fresh and previously frozen CD34+ cells showed similar transduction and expansion rates. Transgene-positive cells did neither show proliferative impairment nor alteration in their lymphoid differentiation profile. The sarcoma virus-derived promoter only could express sufficient levels of iCaspase 9 to mediate dimerizer-induced apoptosis. Finally, the CD123 CAR was efficiently expressed in CD34+ cells and proved to be functional when expressed on differentiated T-cells. Therefore, the transduction of CD34+ cells with alpharetroviral vectors represents a feasible and potentially safer approach for stem cell-based immunotherapies for cancer.


Asunto(s)
Alpharetrovirus/genética , Sangre Fetal/citología , Ingeniería Genética , Vectores Genéticos/genética , Células Precursoras de Linfocitos T/citología , Células Precursoras de Linfocitos T/metabolismo , Antígenos CD34/metabolismo , Apoptosis , Proteínas de la Membrana Bacteriana Externa , Biomarcadores , Diferenciación Celular , Expresión Génica , Técnicas de Transferencia de Gen , Genes Reporteros , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Humanos , Subunidad alfa del Receptor de Interleucina-3/inmunología , Fenotipo , Regiones Promotoras Genéticas , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/inmunología , Linfocitos T/citología , Linfocitos T/inmunología , Linfocitos T/metabolismo , Transducción Genética , Transgenes
4.
Biomaterials ; 97: 97-109, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27162078

RESUMEN

Primary human T lymphocytes represent an important cell population for adoptive immunotherapies, including chimeric-antigen and T-cell receptor applications, as they have the capability to eliminate non-self, virus-infected and tumor cells. Given the increasing numbers of clinical immunotherapy applications, the development of an optimal vector platform for genetic T lymphocyte engineering, which allows cost-effective high-quality vector productions, remains a critical goal. Alpharetroviral self-inactivating vectors (ARV) have several advantages compared to other vector platforms, including a more random genomic integration pattern and reduced likelihood for inducing aberrant splicing of integrated proviruses. We developed an ARV platform for the transduction of primary human T lymphocytes. We demonstrated functional transgene transfer using the clinically relevant herpes-simplex-virus thymidine kinase variant TK.007. Proof-of-concept of alpharetroviral-mediated T-lymphocyte engineering was shown in vitro and in a humanized transplantation model in vivo. Furthermore, we established a stable, human alpharetroviral packaging cell line in which we deleted the entry receptor (SLC1A5) for RD114/TR-pseudotyped ARVs to prevent superinfection and enhance genomic integrity of the packaging cell line and viral particles. We showed that superinfection can be entirely prevented, while maintaining high recombinant virus titers. Taken together, this resulted in an improved production platform representing an economic strategy for translating the promising features of ARVs for therapeutic T-lymphocyte engineering.


Asunto(s)
Alpharetrovirus/metabolismo , Técnicas Genéticas , Vectores Genéticos/metabolismo , Linfocitos T/metabolismo , Ensamble de Virus , Secuencia de Bases , Sistemas CRISPR-Cas/genética , Células Clonales , Genes Reporteros , Células HEK293 , Humanos , Células Jurkat , Reproducibilidad de los Resultados , Linfocitos T/inmunología , Transducción Genética , Transgenes
5.
J Mol Med (Berl) ; 94(1): 83-93, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26300042

RESUMEN

UNLABELLED: Natural killer (NK) cells play an important role in tumor immunotherapy with their unique capability of killing transformed cells without the need for prior sensitization and without major histocompatibility complex (MHC)/peptide restriction. However, tumor cells can escape NK cell cytotoxicity by various tumor immune escape mechanisms. To overcome these escape mechanisms, NK cells can be modified to express chimeric antigen receptors (CARs), enhancing their tumor-specific cytotoxicity. To determine the most efficacious method to modify human NK cells, we compared different retroviral vector systems, retroviral pseudotypes, and transduction protocols. Using optimized transduction conditions, the highest transduction levels (up to 60%) were achieved with alpharetroviral vectors. Alpharetroviral-modified primary human NK cells exhibited no alteration in receptor expression and had similar degranulation activity as untransduced NK cells, thus demonstrating that alpharetroviral modification did not negatively affect NK cell cytotoxicity. Transduction of NK cells with an alpharetroviral vector containing a CD19 CAR expression cassette selectively enhanced NK cell cytotoxicity towards CD19-expressing leukemia cells, achieving nearly complete elimination of leukemia cells after 48 h. Taken together, alpharetroviral vectors are promising tools for NK cell-mediated cancer immunotherapy applications. KEY MESSAGES: Efficient modification of human NK cells using alpharetroviral vectors. Anti-CD19-CAR-NK cells exhibited improved cytotoxicity towards CD19(+) leukemia cells. Alpharetroviral vectors are promising tools for immunotherapy applications using NK cells.


Asunto(s)
Alpharetrovirus/genética , Antígenos CD19/genética , Citotoxicidad Inmunológica/genética , Vectores Genéticos/genética , Células Asesinas Naturales/inmunología , Leucemia/terapia , Receptores de Antígenos/genética , Línea Celular Tumoral , Citotoxicidad Inmunológica/inmunología , Terapia Genética/métodos , Proteínas Fluorescentes Verdes/genética , Humanos , Inmunoterapia Adoptiva/métodos , Células Asesinas Naturales/citología , Leucemia/inmunología , Receptores de Antígenos/biosíntesis , Receptores de Antígenos/inmunología , Transducción Genética/métodos , Escape del Tumor/inmunología
6.
Curr Gene Ther ; 15(3): 245 - 254, 2015 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-25963902

RESUMEN

The article entitled "Novel and safer self-inactivating vectors for gene therapy of Wiskott-Aldrich Syndrome", by E. G. Coci1, T. Maetzig, D. Zychlinski, M. Rothe, J. D. Suerth, C. Klein and A.Schambach has been retracted, on the request of the authors.Kindly see Bentham Science Policy on Article retraction at the link given below:(https://www.benthamscience.com/journals/current-medical-imaging/author-guidelines/).It is a pre-requisite for authors to declare explicitly that their work is original and has not been published elsewhere. Authors are advised to properly cite the original source to avoid plagiarism and copyright violation. As such this article represents a severe abuse of the scientific publishing system. Bentham Science Publishers takes a very strong view on this matter and apologizes to the readers of the journal for any inconvenience this may cause.

7.
Front Pharmacol ; 6: 21, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25729364

RESUMEN

In contrast to donor T cells, natural killer (NK) cells are known to mediate anti-cancer effects without the risk of inducing graft-versus-host disease (GvHD). In order to improve cytotoxicity against resistant cancer cells, auspicious efforts have been made with chimeric antigen receptor (CAR) expressing T- and NK cells. These CAR-modified cells express antigen receptors against tumor-associated surface antigens, thus redirecting the effector cells and enhancing tumor-specific immunosurveillance. However, many cancer antigens are also expressed on healthy tissues, potentially leading to off tumor/on target toxicity by CAR-engineered cells. In order to control such potentially severe side effects, the insertion of suicide genes into CAR-modified effectors can provide a means for efficient depletion of these cells. While CAR-expressing T cells have entered successfully clinical trials, experience with CAR-engineered NK cells is mainly restricted to pre-clinical investigations and predominantly to NK cell lines. In this review we summarize the data on CAR expressing NK cells focusing on the possible advantage using these short-lived effector cells and discuss the necessity of suicide switches. Furthermore, we address the compliance of such modified NK cells with regulatory requirements as a new field in cellular immunotherapy.

8.
Viruses ; 6(12): 4811-38, 2014 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-25490763

RESUMEN

Gene therapy using integrating retroviral vectors has proven its effectiveness in several clinical trials for the treatment of inherited diseases and cancer. However, vector-mediated adverse events related to insertional mutagenesis were also observed, emphasizing the need for safer therapeutic vectors. Paradoxically, alpharetroviruses, originally discovered as cancer-causing agents, have a more random and potentially safer integration pattern compared to gammaretro- and lentiviruses. In this review, we provide a short overview of the history of alpharetroviruses and explain how they can be converted into state-of-the-art gene delivery tools with improved safety features. We discuss development of alpharetroviral vectors in compliance with regulatory requirements for clinical translation, and provide an outlook on possible future gene therapy applications. Taken together, this review is a broad overview of alpharetroviral vectors spanning the bridge from their parental virus discovery to their potential applicability in clinical settings.


Asunto(s)
Alpharetrovirus/fisiología , Terapia Genética/instrumentación , Neoplasias/terapia , Alpharetrovirus/genética , Animales , Terapia Genética/métodos , Vectores Genéticos/genética , Vectores Genéticos/fisiología , Humanos , Neoplasias/genética , Integración Viral
9.
Mol Ther ; 22(5): 919-28, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24434935

RESUMEN

Methods for generating induced pluripotent stem cells (iPSCs) for disease modeling and cell therapies have progressed from integrating vectors to transient delivery of reprogramming factors, avoiding permanent genomic modification. A major limitation of unmodified iPSCs is the assessment of their distribution and contribution to adverse reactions in autologous cell therapy. Here, we report that polycistronic lentiviral vectors with single Flp recombinase (Flp) recognition target (FRT) sites can be used to generate murine iPSCs that are devoid of the reprogramming cassette but carry an intergenic 300-bp long terminal repeat sequence. Performing quantitative polymerase chain reaction on this marker, we could determine genetic identity and tissue contribution of iPSC-derived teratomas in mice. Moreover, we generated iPSCs carrying heterospecific FRT twin sites, enabling excision and recombinase-mediated cassette exchange (RMCE) of the reprogramming cassette for another expression unit of choice. Following screening of iPSCs for "safe harbor" integration sites, expression cassettes were introduced by RMCE into various previously silenced loci of selected single-copy iPSCs. Analysis of DNA methylation showed that RMCE reverted the local epigenetic signature, which allowed transgene expression in undifferentiated iPSCs and in differentiated progeny. These findings support the concept of creating clonotypically defined exchangeable and traceable pluripotent stem cells for disease research and cell therapy.


Asunto(s)
Diferenciación Celular/genética , Tratamiento Basado en Trasplante de Células y Tejidos , ADN Nucleotidiltransferasas/genética , Células Madre Pluripotentes Inducidas , Secuencias Repetidas Terminales/genética , Animales , Reprogramación Celular , Metilación de ADN , Vectores Genéticos , Lentivirus/genética , Ratones
10.
Hum Gene Ther Methods ; 24(2): 68-79, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23384086

RESUMEN

Retroviral gene transfer has proven therapeutic potential in clinical gene therapy trials but may also cause abnormal cell growth via perturbation of gene expression in the locus surrounding the insertion site. By establishing clonal marks, retroviral insertions are also used to describe the regenerative potential of individual cells. Deep sequencing approaches have become the method of choice to study insertion profiles in preclinical models and clinical trials. We used a protocol combining ligation-mediated polymerase chain reaction (LM-PCR) and pyrosequencing for insertion profiling and quantification in cells of various tissues transduced with various retroviral vectors. The presented method allows simultaneous analysis of a multitude of DNA-barcoded samples per pyrosequencing run, thereby allowing cost-effective insertion screening in studies with multiple samples. In addition, we investigated whether the number of pyrosequencing reads can be used to quantify clonal abundance. By comparing pyrosequencing reads against site-specific quantitative PCR and by performing spike-in experiments, we show that considerable variation exists in the quantification of insertion sites even when present in the same clone. Our results suggest that the protocol used here and similar approaches might misinterpret abundance clones defined by insertion sites, unless careful calibration measures are taken. The crucial variables causing this variation need to be defined and methodological improvements are required to establish pyrosequencing reads as a quantification measure in polyclonal situations.


Asunto(s)
Vectores Genéticos/genética , Reacción en Cadena de la Polimerasa/métodos , Provirus/genética , Retroviridae/genética , Análisis de Secuencia de ADN/métodos , Transducción Genética , Alpharetrovirus/genética , Animales , Células Cultivadas , Ratones , Mutagénesis Insercional , Integración Viral/genética
11.
Mol Ther ; 21(3): 648-61, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23207695

RESUMEN

Comparative integrome analysis has revealed that the most neutral integration pattern among retroviruses is attributed to alpharetroviruses. We chose X-linked chronic granulomatous disease (X-CGD) as model to evaluate the potential of self-inactivating (SIN) alpharetroviral vectors for gene therapy of monogenic diseases. Therefore, we combined the alpharetroviral vector backbone with the elongation factor-1α short promoter, both considered to possess a low genotoxic profile, to drive transgene (gp91(phox)) expression. Following efficient transduction transgene expression was sustained and provided functional correction of the CGD phenotype in a cell line model at low vector copy number. Further analysis in a murine X-CGD transplantation model revealed gene-marking of bone marrow cells and oxidase positive granulocytes in peripheral blood. Transduction of human X-CGD CD34+ cells provided functional correction up to wild-type levels and long-term expression upon transplantation into a humanized mouse model. In contrast to lentiviral vectors, no aberrantly spliced transcripts containing cellular exons fused to alpharetroviral sequences were found in transduced cells, implying that the safety profile of alpharetroviral vectors may extend beyond their neutral integration profile. Taken together, this highlights the potential of this SIN alpharetroviral system as a platform for new candidate vectors for future gene therapy of hematopoietic disorders.


Asunto(s)
Alpharetrovirus/genética , Terapia Genética/métodos , Vectores Genéticos , Enfermedad Granulomatosa Crónica/terapia , Empalme del ARN , Animales , Células de la Médula Ósea , Línea Celular Tumoral , Variaciones en el Número de Copia de ADN , Modelos Animales de Enfermedad , Granulocitos , Enfermedad Granulomatosa Crónica/genética , Humanos , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , NADPH Oxidasa 2 , NADPH Oxidasas/genética , NADPH Oxidasas/metabolismo , Fenotipo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción Genética , Transgenes
12.
Curr Opin Immunol ; 24(5): 598-608, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22995202

RESUMEN

The genetic modification of lymphocytes is an important topic in the emerging field of gene therapy. Many clinical trials targeting immunodeficiency syndromes or cancer have shown therapeutic benefit; further applications address inflammatory and infectious disorders. Retroviral vector development requires a detailed understanding of the interactions with the host. Most researchers have used simple gammaretroviral vectors to modify lymphocytes, either directly or via hematopoietic stem and progenitor cells. Lentiviral, spumaviral (foamyviral) and alpharetroviral vectors were designed to reduce the necessity for cell stimulation and to utilize potentially safer integration properties. Novel surface modifications (pseudotyping) and transgenes, built using synthetic components, expand the retroviral toolbox, altogether promising increased specificity and potency. Product consistency will be an important criterion for routine clinical use.


Asunto(s)
Vectores Genéticos/genética , Vectores Genéticos/inmunología , Retroviridae/genética , Retroviridae/inmunología , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/virología , Animales , Ensayos Clínicos como Asunto , Vectores Genéticos/uso terapéutico , Humanos , Mutagénesis Insercional/genética , Mutagénesis Insercional/inmunología , Mutagénesis Insercional/métodos , Subgrupos de Linfocitos T/metabolismo
13.
Mol Ther ; 20(5): 1022-32, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22334016

RESUMEN

Comparative integrome analyses have highlighted alpharetroviral vectors with a relatively neutral, and thus favorable, integration spectrum. However, previous studies used alpharetroviral vectors harboring viral coding sequences and intact long-terminal repeats (LTRs). We recently developed self-inactivating (SIN) alpharetroviral vectors with an advanced split-packaging design. In a murine bone marrow (BM) transplantation model we now compared alpharetroviral, gammaretroviral, and lentiviral SIN vectors and showed that all vectors transduced hematopoietic stem cells (HSCs), leading to comparable, sustained multilineage transgene expression in primary and secondary transplanted mice. Alpharetroviral integrations were decreased near transcription start sites, CpG islands, and potential cancer genes compared with gammaretroviral, and decreased in genes compared with lentiviral integrations. Analyzing the transcriptome and intragenic integrations in engrafting cells, we observed stronger correlations between in-gene integration targeting and transcriptional activity for gammaretroviral and lentiviral vectors than for alpharetroviral vectors. Importantly, the relatively "extragenic" alpharetroviral integration pattern still supported long-term transgene expression upon serial transplantation. Furthermore, sensitive genotoxicity studies revealed a decreased immortalization incidence compared with gammaretroviral and lentiviral SIN vectors. We conclude that alpharetroviral SIN vectors have a favorable integration pattern which lowers the risk of insertional mutagenesis while supporting long-term transgene expression in the progeny of transplanted HSCs.


Asunto(s)
Alpharetrovirus/genética , Vectores Genéticos , Células Madre Hematopoyéticas/metabolismo , Transgenes , Animales , Línea Celular , Islas de CpG , Gammaretrovirus/genética , Marcación de Gen , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas/citología , Humanos , Lentivirus/genética , Ratones , Mutagénesis Insercional , Factores de Riesgo , Secuencias Repetidas Terminales , Sitio de Iniciación de la Transcripción , Transcriptoma/genética , Transducción Genética
14.
J Virol ; 84(13): 6626-35, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20410274

RESUMEN

Accidental insertional activation of proto-oncogenes and potential vector mobilization pose serious challenges for human gene therapy using retroviral vectors. Comparative analyses of integration sites of different retroviral vectors have elucidated distinct target site preferences, highlighting vectors based on the alpharetrovirus Rous sarcoma virus (RSV) as those with the most neutral integration spectrum. To date, alpharetroviral vector systems are based mainly on single constructs containing viral coding sequences and intact long terminal repeats (LTR). Even though they are considered to be replication incompetent in mammalian cells, the transfer of intact viral genomes is unacceptable for clinical applications, due to the risk of vector mobilization and the potentially immunogenic expression of viral proteins, which we minimized by setting up a split-packaging system expressing the necessary viral proteins in trans. Moreover, intact LTRs containing transcriptional elements are capable of activating cellular genes. By removing most of these transcriptional elements, we were able to generate a self-inactivating (SIN) alpharetroviral vector, whose LTR transcriptional activity is strongly reduced and whose transgene expression can be driven by an internal promoter of choice. Codon optimization of the alpharetroviral Gag/Pol expression construct and further optimization steps allowed the production of high-titer self-inactivating vector particles in human cells. We demonstrate proof of principle for the versatility of alpharetroviral SIN vectors for the genetic modification of murine and human hematopoietic cells at a low multiplicity of infection.


Asunto(s)
Alpharetrovirus/fisiología , Terapia Genética/métodos , Vectores Genéticos , Secuencias Repetidas Terminales/genética , Transgenes , Ensamble de Virus , Alpharetrovirus/genética , Animales , Línea Celular , Células Cultivadas , Expresión Génica , Humanos , Ratones , Regiones Promotoras Genéticas , ARN Viral/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA