Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 176
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Photodiagnosis Photodyn Ther ; 45: 103898, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38008301

RESUMEN

We synthesized a new silyl porphyrin derivative conjugated with 6-deoxy-6-sulfo-α-d-glucopyranose (SGlc). Conjugation with SGlc improved A549 cellular uptake without significant changes in the photophysical and photochemical properties and subcellular localization. This improved cellular uptake led to enhanced photodynamic activity. Furthermore, conjugation with SGlc suppressed dark toxicity. These advantages were not observed for a conjugate with a glucose molecule. These results indicated that the conjugation with SGlc is a promising strategy for enhancing photodynamic efficacy.


Asunto(s)
Fotoquimioterapia , Porfirinas , Humanos , Fármacos Fotosensibilizantes/farmacología , Fotoquimioterapia/métodos , Células A549 , Glucosa , Porfirinas/farmacología
2.
J Antibiot (Tokyo) ; 76(2): 75-82, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36513753

RESUMEN

Vanitaracin A, an anti-hepatitis B virus polyketide, has been previously isolated from Talaromyces sp. In the present study, we searched for novel compounds in the culture broth obtained from a vanitaracin A-producing fungus under various conditions. Three novel compounds (vanitaracin C, vanitaraphilone A, and 2-hydroxy-4-(hydroxymethyl)-6-methylbenzaldehyde) were isolated, and their structures were determined using spectroscopic methods (1D/2D NMR and MS). In addition, the antiviral spectrum of vanitaracin A was examined by measuring its antiviral activities against rabies virus, Borna disease virus 1, and bovine leukemia virus. This compound exhibited antiviral activity against bovine leukemia virus, which is the causative agent of enzootic bovine leukosis. The anti-bovine leukemia virus effects of other compounds isolated from the vanitaracin A-producing fungus, namely, vanitaracins B and C, vanitaraphilone A, and 2-hydroxy-4-(hydroxymethyl)-6-methylbenzaldehyde, were also evaluated. Vanitaracin B, vanitaraphilone A and 2-hydroxy-4-(hydroxymethyl)-6-methylbenzaldehyde were also found to exhibit activity against bovine leukemia virus. These findings reveal the broad-spectrum antiviral activity of the vanitaracin scaffold and suggest several candidates for the development of anti-bovine leukemia virus drugs.


Asunto(s)
Leucemia , Policétidos , Talaromyces , Animales , Bovinos , Humanos , Antivirales/química , Estructura Molecular , Policétidos/farmacología , Talaromyces/química
3.
J Antibiot (Tokyo) ; 75(2): 92-97, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35034105

RESUMEN

Vanitaracin A is an anti-hepatitis B virus (anti-HBV) compound isolated from the culture broth of the fungus Talaromyces sp. Vanitaracin A inhibits the entry of HBV into target cells with sub-micromolar IC50 values. While a structure-activity relationship study is highly desirable, a synthetic approach still needs to be developed, which is difficult because the absolute configurations of the six stereogenic centers in the structure of vanitaracin A have not yet been determined. In the present study, we used the crystalline sponge method to clarify the configuration of the compound after determining the absolute configuration of the secondary alcohol using a modified Mosher ester method. Combining these analyses with the NOESY spectrum of vanitaracin A and NMR analyses of the crude side-chain carboxylic acid obtained by the alkaline hydrolysis of vanitaracin A revealed the absolute configurations of all stereogenic centers in this important compound.


Asunto(s)
Antivirales/química , Virus de la Hepatitis B/efectos de los fármacos , Policétidos/química , Antivirales/farmacología , Hidrólisis , Espectroscopía de Resonancia Magnética , Conformación Molecular , Estructura Molecular , Policétidos/farmacología , Relación Estructura-Actividad , Talaromyces/química
4.
J Radiat Res ; 63(1): 19-29, 2022 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-34738103

RESUMEN

Malignant pleural mesothelioma (MPM) is a highly malignant disease that develops after asbestos exposure. Although the number of MPM cases is predicted to increase, no effective standard therapies have been established. The novel radiosensitizer α-sulfoquinovosyl-acylpropanediol (SQAP) enhances the effects of γ-radiation in human lung and prostate cancer cell lines and in animal models. In this study, we explored the radiosensitizing effect of SQAP and its mechanisms in MPM. The human MPM cell lines MSTO-211H and MESO-4 were implanted subcutaneously into the backs and thoracic cavities of immunodeficient KSN/Slc mice, then 2 mg/kg SQAP was intravenously administered with or without irradiation with a total body dose of 8 Gy. In both the orthotopic and ectopic xenograft murine models, the combination of irradiation plus SQAP delayed the implanted human MSTO-211H tumor growth. The analysis of the changes in the relative tumor volume of the MSTO-211H indicated a statistically significant difference after 8 Gy total body combined with 2 mg/kg SQAP, compared to both the untreated control (P = 0.0127) and the radiation treatment alone (P = 0.0171). After the treatment in each case, immunostaining of the harvested tumors revealed decreased cell proliferation, increased apoptosis and normalization of tumor blood vessels in the SQAP- and irradiation-treated group. Furthermore, hypoxia-inducible factor (HIF) 1 mRNA and protein expression were decreased, indicating reoxygenation in this group. In conclusion, SQAP improved hypoxic conditions in tumor tissue and may elicit a radiosensitizing effect in malignant mesothelioma models.


Asunto(s)
Antineoplásicos , Mesotelioma Maligno , Mesotelioma , Neoplasias Pleurales , Animales , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Humanos , Masculino , Mesotelioma/tratamiento farmacológico , Mesotelioma/metabolismo , Mesotelioma/radioterapia , Ratones , Ratones Desnudos , Neoplasias Pleurales/tratamiento farmacológico , Neoplasias Pleurales/metabolismo , Neoplasias Pleurales/radioterapia , Tolerancia a Radiación
5.
Transl Oncol ; 15(1): 101285, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34839108

RESUMEN

α-Sulfoquinovosylacyl-1,3-propanediol (SQAP) is a semi-synthetic derivative of natural sulfoglycolipid that sensitizes tumors to external-beam radiotherapy. How SQAP affects internal radiotherapy, however, is not known. Here, we investigated the effects of SQAP for radioimmunotherapy (RIT) targeting tissue factor (TF) in a stroma-rich refractory pancreatic cancer mouse model, BxPC-3. A low dose of SQAP (2 mg/kg) increased tumor uptake of the 111In-labeled anti-TF antibody 1849, indicating increased tumor perfusion. The addition of SQAP enhanced the growth-inhibitory effect of 90Y-labeled 1849 without leading to severe body weight changes, allowing for the dose of 90Y-labeled 1849 to be reduced to half that when used alone. Histologic analysis revealed few necrotic and apoptotic cells, but Ki-67-positive proliferating cells and increased vascular formation were detected. These results suggest that the addition of a low dose of SQAP may improve the therapeutic efficacy of TF-targeted RIT by increasing tumor perfusion, even for stroma-rich refractory pancreatic cancer.

6.
Bioorg Med Chem Lett ; 52: 128391, 2021 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-34601028

RESUMEN

Sulfoquynovosylacyl propanediol (SQAP; 1) has been developed as a radiosensitizer (anti-cancer agent) for solid tumors, but it was easily cleaved in vivo and had a problem of short residence time. We synthesized a novel compound of a SQAP derivative (3-octadecanoxypropyl 6-deoxy-6-sulfo-α-d-glucopyranoside: ODSG; 2) to solve these problems not easily cleaved by lipase. ODSG (2) cytotoxicity was investigated in vitro, resulting in low toxicity like SQAP (1).


Asunto(s)
Lipasa/metabolismo , Fármacos Sensibilizantes a Radiaciones/farmacología , Células A549 , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Humanos , Estructura Molecular , Fármacos Sensibilizantes a Radiaciones/química , Fármacos Sensibilizantes a Radiaciones/metabolismo , Relación Estructura-Actividad
7.
Bioorg Med Chem ; 41: 116203, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34015702

RESUMEN

Epo-C12 is a synthetic derivative of epolactaene, isolated from Penicillium sp. BM 1689-P. Epo-C12 induces apoptosis in human acute lymphoblastoid leukemia BALL-1 cells. In our previous studies, seven proteins that bind to Epo-C12 were identified by a combination of pull-down experiments using biotinylated Epo-C12 (Bio-Epo-C12) and mass spectrometry. In the present study, the effect of Epo-C12 on peroxiredoxin 1 (Prx 1), one of the proteins that binds to Epo-C12, was investigated. Epo-C12 inhibited Prx 1 peroxidase activity. However, it did not suppress its chaperone activity. Binding experiments between Bio-Epo-C12 and point-mutated Prx 1s suggest that Epo-C12 binds to Cys52 and Cys83 in Prx 1. The present study revealed that Prx 1 is one of the target proteins through which Epo-C12 exerts an apoptotic effect in BALL-1 cells.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Peroxirredoxinas/antagonistas & inhibidores , Animales , Antineoplásicos/química , Línea Celular Tumoral , Inhibidores Enzimáticos , Compuestos Epoxi/química , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Humanos , Estructura Molecular , Mutación , Peroxirredoxinas/genética , Peroxirredoxinas/metabolismo , Polienos/química
8.
Biosci Biotechnol Biochem ; 85(1): 85-91, 2021 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-33577659

RESUMEN

Sulfoglycolipid, SQAP, is a radiosensitizing agent that makes tumor cells more sensitive to radiation therapy. A previous study revealed that SQAP induced the degradation of hypoxia-inducible factor-1α (HIF-1α) and inhibited angiogenesis in a hepatoma model mouse. Herein, we examined the biological activities of SQAP against hepatocarcinoma cells under low oxygen conditions. Cell growth inhibition of SQAP under hypoxic conditions was significantly higher than that under normoxic conditions. In addition, SQAP was found to impair the expression of histone deacetylase (HDAC) under low oxygen conditions. Our present data suggested that SQAP induced the degradation of HIF-1α and then decreased the expression of HDAC1. Unlike known HDAC inhibitors, SQAP increased the acetylation level of histone in cells without inhibition of enzymatic activity of HDACs. Our data demonstrated hypoxia-specific unique properties of SQAP.


Asunto(s)
Muerte Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glucolípidos/química , Glucolípidos/farmacología , Histona Desacetilasa 1/metabolismo , Hipoxia Tumoral/efectos de los fármacos , Acetilación/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Histonas/metabolismo , Humanos
9.
Expert Opin Drug Discov ; 15(10): 1199-1211, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32660284

RESUMEN

INTRODUCTION: Our understanding of the mechanism of action of bioactive small molecules contributes to the research and development of new medical drugs, as well as elucidating the pathological mechanisms underlying various diseases. Researchers in this field are committed to a very ambitious goal: the discovery of novel therapeutic compounds along with their molecular targets. To achieve this goal, new methodological developments are indispensable. AREAS COVERED: This review gives an update on the advancements of phage display (PD) technology in the past decade (2011-2020) for determining the targets of the small molecule therapeutics. In particular, other than providing a brief overview of this field of research, we focus on reporting the research trends and the results solely obtained using this strategy. EXPERT OPINION: Despite the development of bioinformatics tools and artificial intelligence (AI)-mediated methods, affinity-guided information obtained experimentally are still indispensable to identify drug-protein interactions. By taking advantage of small-molecule-oriented PD methods and their improvements, the extension of the druggable proteome will be further expanded, providing new opportunities to generate small-molecule therapeutics.


Asunto(s)
Técnicas de Visualización de Superficie Celular , Desarrollo de Medicamentos/métodos , Terapia Molecular Dirigida , Inteligencia Artificial , Biología Computacional , Descubrimiento de Drogas/métodos , Humanos , Bibliotecas de Moléculas Pequeñas
10.
Biosci Biotechnol Biochem ; 84(2): 217-227, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31589093

RESUMEN

4'-Ethynyl-2-fluoro-2'-deoxyadenosine (EFdA) and 4'-ethynyl-2'-deoxyadenosine (EdA) are nucleoside analogues which inhibit human immunodeficiency virus type 1 (HIV-1) reverse transcriptase. EdAP, a cyclosaligenyl (cycloSal) phosphate derivative of EdA, inhibits the replication of the influenza A virus. The common structural feature of these compounds is the ethynyl group at the 4'-position. In this study, these nucleoside analogues were prepared by a common synthetic strategy starting from the known 1,2-di-O-acetyl-D-ribofuranose. Biological evaluation of EdAP revealed that this compound reduced hepatitis B virus (HBV) replication dose-dependently without cytotoxicity against host cells tested in this study.


Asunto(s)
Antivirales/síntesis química , Nucleótidos de Desoxiadenina/síntesis química , Desoxiadenosinas/síntesis química , Virus de la Hepatitis B/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Antivirales/farmacología , Línea Celular , Nucleótidos de Desoxiadenina/farmacología , Desoxiadenosinas/farmacología , Virus de la Hepatitis B/fisiología , Humanos
11.
Bioorg Med Chem ; 27(23): 115149, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31679979

RESUMEN

Pyrenocine A, a phytotoxin, was found to exhibit cytotoxicity against cancer cells with an IC50 value of 2.6-12.9 µM. Live cell imaging analysis revealed that pyrenocine A arrested HeLa cells at the M phase with characteristic ring-shaped chromosomes. Furthermore, as a result of immunofluorescence staining analysis, we found that pyrenocine A resulted in the formation of monopolar spindles in HeLa cells. Monopolar spindles are known to be induced by inhibitors of the kinesin motor protein Eg5 such as monastrol and STLC. Monastrol and STLC induce monopolar spindle formation and M phase arrest via inhibition of the ATPase activity of Eg5. Interestingly, our data revealed that pyrenocine A had no effect on the ATPase activity of Eg5 in vitro, which suggested the compound induces a monopolar spindle by an unknown mechanism. Structure-activity relationship analysis indicates that the enone structure of pyrenocine A is likely to be important for its cytotoxicity. An alkyne-tagged analog of pyrenocine A was synthesized and suppressed proliferation of HeLa cells with an IC50 value of 2.3 µM. We concluded that pyrenocine A induced monopolar spindle formation by a novel mechanism other than direct inhibition of Eg5 motor activity, and the activity of pyrenocine A may suggest a new anticancer mechanism.


Asunto(s)
Antineoplásicos/farmacología , Proliferación Celular/efectos de los fármacos , Huso Acromático/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Células HeLa , Humanos , Neoplasias/tratamiento farmacológico , Pirimidinas/farmacología , Pironas/farmacología , Tionas/farmacología
12.
Molecules ; 24(14)2019 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-31319565

RESUMEN

Influenza A viruses leading to infectious respiratory diseases cause seasonal epidemics and sometimes periodic global pandemics. Viral polymerase is an attractive target in inhibiting viral replication, and 4'-ethynyladenosine, which has been reported as a highly potent anti-human immunodeficiency virus (HIV) nucleoside derivative, can work as an anti-influenza agent. Herein, we designed and synthesized a 4'-ethynyl-2'-deoxyadenosine 5'-monophosphate analog called EdAP (5). EdAP exhibited potent inhibition against influenza virus multiplication in Madin-Darby canine kidney (MDCK) cells transfected with human α2-6-sialyltransferase (SIAT1) cDNA and did not show any toxicity toward the cells. Surprisingly, this DNA-type nucleic acid analog (5) inhibited the multiplication of influenza A virus, although influenza virus is an RNA virus that does not generate DNA.


Asunto(s)
Antivirales/farmacología , Nucleótidos de Desoxiadenina/farmacología , Desoxiadenosinas/síntesis química , Gripe Humana/tratamiento farmacológico , Animales , Antivirales/síntesis química , Antivirales/química , Nucleótidos de Desoxiadenina/síntesis química , Nucleótidos de Desoxiadenina/química , Desoxiadenosinas/química , Desoxiadenosinas/farmacología , Perros , Células HEK293 , Humanos , Subtipo H3N2 del Virus de la Influenza A/efectos de los fármacos , Subtipo H3N2 del Virus de la Influenza A/patogenicidad , Gripe Humana/virología , Células de Riñón Canino Madin Darby , Replicación Viral/efectos de los fármacos
13.
Sci Rep ; 9(1): 9283, 2019 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-31243315

RESUMEN

Chloramphenicol (Cm) is a broad-spectrum classic antibiotic active against prokaryotic organisms. However, Cm has severe side effects in eukaryotes of which the cause remains unknown. The plant pathogenic fungus Magnaporthe oryzae, which causes rice blast, forms an appressorium to infect the host cell via single-cell differentiation. Chloramphenicol specifically inhibits appressorium formation, which indicates that Cm has a novel molecular target (or targets) in the rice blast fungus. Application of the T7 phage display method inferred that MoDullard, a Ser/Thr-protein phosphatase, may be a target of Cm. In animals Dullard functions in cell differentiation and protein synthesis, but in fungi its role is poorly understood. In vivo and in vitro analyses showed that MoDullard is required for appressorium formation, and that Cm can bind to and inhibit MoDullard function. Given that human phosphatase CTDSP1 complemented the MoDullard function during appressorium formation by M. oryzae, CTDSP1 may be a novel molecular target of Cm in eukaryotes.


Asunto(s)
Cloranfenicol/farmacología , Magnaporthe/efectos de los fármacos , Oryza/microbiología , Fosfoproteínas Fosfatasas/antagonistas & inhibidores , Antifúngicos/farmacología , Bacteriófago T7 , Diferenciación Celular , ADN de Hongos , Eliminación de Gen , Prueba de Complementación Genética , Humanos , Magnaporthe/enzimología , Mutación , Biblioteca de Péptidos , Fosfoproteínas Fosfatasas/química , Fosfoproteínas Fosfatasas/metabolismo , Enfermedades de las Plantas/microbiología , Plásmidos/genética , ARN de Hongos
14.
J Biol Chem ; 294(19): 7942-7965, 2019 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-30926603

RESUMEN

endo-ß-1,2-Glucanase (SGL) is an enzyme that hydrolyzes ß-1,2-glucans, which play important physiological roles in some bacteria as a cyclic form. To date, no eukaryotic SGL has been identified. We purified an SGL from Talaromyces funiculosus (TfSGL), a soil fungus, to homogeneity and then cloned the complementary DNA encoding the enzyme. TfSGL shows no significant sequence similarity to any known glycoside hydrolase (GH) families, but shows significant similarity to certain eukaryotic proteins with unknown functions. The recombinant TfSGL (TfSGLr) specifically hydrolyzed linear and cyclic ß-1,2-glucans to sophorose (Glc-ß-1,2-Glc) as a main product. TfSGLr hydrolyzed reducing-end-modified ß-1,2-gluco-oligosaccharides to release a sophoroside with the modified moiety. These results indicate that TfSGL is an endo-type enzyme that preferably releases sophorose from the reducing end of substrates. Stereochemical analysis demonstrated that TfSGL is an inverting enzyme. The overall structure of TfSGLr includes an (α/α)6 toroid fold. The substrate-binding mode was revealed by the structure of a Michaelis complex of an inactive TfSGLr mutant with a ß-1,2-glucoheptasaccharide. Mutational analysis and action pattern analysis of ß-1,2-gluco-oligosaccharide derivatives revealed an unprecedented catalytic mechanism for substrate hydrolysis. Glu-262 (general acid) indirectly protonates the anomeric oxygen at subsite -1 via the 3-hydroxy group of the Glc moiety at subsite +2, and Asp-446 (general base) activates the nucleophilic water via another water. TfSGLr is apparently different from a GH144 SGL in the reaction and substrate recognition mechanism based on structural comparison. Overall, we propose that TfSGL and closely-related enzymes can be classified into a new family, GH162.


Asunto(s)
Proteínas Fúngicas/química , Glicósido Hidrolasas/química , Microbiología del Suelo , Talaromyces/enzimología , Relación Estructura-Actividad , Especificidad por Sustrato
15.
Xenobiotica ; 49(3): 346-362, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29543539

RESUMEN

Sulfoquinovosylacylpropanediol (SQAP) is a novel potent radiosensitizer that inhibits angiogenesis in vivo and results in increased oxigenation and reduced tumor volume. We investigated the distribution, metabolism, and excretion of SQAP in male KSN-nude mice transplanted with a human pulmonary carcinoma, Lu65. For the metabolism analysis, a 2 mg (2.98 MBq)/kg of [glucose-U-14C]-SQAP (CP-3839) was intravenously injected. The injected SQAP was decomposed into a stearic acid and a sulfoquinovosylpropanediol (SQP) in the body. The degradation was relatively slow in the carcinoma tissue.1,3-propanediol[1-14C]-SQAP (CP-3635) was administered through intravenous injection of a 1 mg (3.48 MBq)/kg dose followed by whole body autoradiography of the mice. The autoradiography analysis demonstrated that SQAP rapidly distributed throughout the whole body and then quickly decreased within 4 hours except the tumor and excretion organs such as liver, kidney. Retention of SQAP was longer in tumor parts than in other tissues, as indicated by higher levels of radioactivity at 4 hours. The radioactivity around the tumor had also completely disappeared within 72 hours.


Asunto(s)
Glucolípidos/farmacocinética , Fármacos Sensibilizantes a Radiaciones/farmacocinética , Administración Intravenosa , Animales , Autorradiografía , Cromatografía Líquida de Alta Presión , Cromatografía Liquida , Glucolípidos/administración & dosificación , Glucolípidos/uso terapéutico , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Ratones Desnudos , Fármacos Sensibilizantes a Radiaciones/administración & dosificación , Fármacos Sensibilizantes a Radiaciones/uso terapéutico , Espectrometría de Masas en Tándem
16.
J Biol Chem ; 293(51): 19559-19571, 2018 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-30381393

RESUMEN

Viruses hijack and modify host cell functions to maximize viral proliferation. Hepatitis C virus (HCV) reorganizes host cell metabolism to produce specialized membrane structures and to modify organelles such as double-membrane vesicles and enlarged lipid droplets (LDs), thereby enabling virus replication and assembly. However, the molecular bases of these host-HCV interactions are largely unknown. Here, using a chemical screen, we demonstrate that the benzamide derivative flutamide reduces the host capacity to produce infectious HCV. Flutamide disrupted the formation of enlarged LDs in HCV-infected cells, thereby abolishing HCV assembly. We also report that aryl hydrocarbon receptor (AhR), a known flutamide target, plays a key role in mediating LD accumulation and HCV production. This AhR function in lipid production was also observed in HCV-uninfected Huh-7 cells and primary human hepatocytes, suggesting that AhR signaling regulates lipid accumulation independently of HCV infection. We further observed that a downstream activity, that of cytochrome P450 1A1 (CYP1A1), was the primary regulator of AhR-mediated lipid production. Specifically, blockade of AhR-induced CYP1A1 up-regulation counteracted LD overproduction, and overproduction of CYP1A1, but not of CYP1B1, in AhR-inactivated cells restored lipid accumulation. Of note, HCV infection up-regulated the AhR-CYP1A1 pathway, resulting in the accumulation of enlarged LDs. In conclusion, we demonstrate that the AhR-CYP1A1 pathway has a significant role in lipid accumulation, a hallmark of HCV infection that maximizes progeny virus production. Our chemical-genetic analysis reveals a new strategy and lead compounds to control hepatic lipid accumulation as well as HCV infection.


Asunto(s)
Citocromo P-450 CYP1A1/metabolismo , Hepacivirus/fisiología , Metabolismo de los Lípidos , Receptores de Hidrocarburo de Aril/metabolismo , Ensamble de Virus , Línea Celular , Flutamida/farmacología , Hepacivirus/efectos de los fármacos , Humanos , Gotas Lipídicas/efectos de los fármacos , Gotas Lipídicas/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Unión Proteica , Ensamble de Virus/efectos de los fármacos
17.
Cancer Res ; 78(24): 6828-6837, 2018 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-30301838

RESUMEN

: Hypoxic zones in solid tumors contribute to radioresistance, and pharmacologic agents that increase tumor oxygenation prior to radiation, including antiangiogenic drugs, can enhance treatment response to radiotherapy. Although such strategies have been applied, imaging assessments of tumor oxygenation to identify an optimum time window for radiotherapy have not been fully explored. In this study, we investigated the effects of α-sulfoquinovosylacyl-1,3-propanediol (SQAP or CG-0321; a synthetic derivative of an antiangiogenic agent) on the tumor microenvironment in terms of oxygen partial pressure (pO2), oxyhemoglobin saturation (sO2), blood perfusion, and microvessel density using electron paramagnetic resonance imaging, photoacoustic imaging, dynamic contrast-enhanced MRI with Gd-DTPA injection, and T2*-weighted imaging with ultrasmall superparamagnetic iron oxide (USPIO) contrast. SCCVII and A549 tumors were grown by injecting tumor cells into the hind legs of mice. Five days of daily radiation (2 Gy) combined with intravenous injection of SQAP (2 mg/kg) 30 minutes prior to irradiation significantly delayed growth of tumor xenografts. Three days of daily treatment improved tumor oxygenation and decreased tumor microvascular density on T2*-weighted images with USPIO, suggesting vascular normalization. Acute effects of SQAP on tumor oxygenation were examined by pO2, sO2, and Gd-DTPA contrast-enhanced imaging. SQAP treatment improved perfusion and tumor pO2 (ΔpO2: 3.1 ± 1.0 mmHg) and was accompanied by decreased sO2 (20%-30% decrease) in SCCVII implants 20-30 minutes after SQAP administration. These results provide evidence that SQAP transiently enhanced tumor oxygenation by facilitating oxygen dissociation from oxyhemoglobin and improving tumor perfusion. Therefore, SQAP-mediated sensitization to radiation in vivo can be attributed to increased tumor oxygenation. SIGNIFICANCE: A multimodal molecular imaging study evaluates pharmacological alteration of the tumor microenvironment to improve radiation response.


Asunto(s)
Imagen Molecular/métodos , Imagen Multimodal/métodos , Neoplasias/tratamiento farmacológico , Neoplasias/radioterapia , Microambiente Tumoral , Células A549 , Acústica , Inhibidores de la Angiogénesis/farmacología , Animales , Espectroscopía de Resonancia por Spin del Electrón , Gadolinio/química , Gadolinio DTPA/química , Glucolípidos/farmacología , Células Endoteliales de la Vena Umbilical Humana , Humanos , Hipoxia , Imagen por Resonancia Magnética , Ratones , Ratones Endogámicos C3H , Microcirculación , Trasplante de Neoplasias , Neoplasias/metabolismo , Oxígeno/química , Oxígeno/metabolismo , Fotoquímica , Tolerancia a Radiación , Radioterapia
18.
Methods Mol Biol ; 1795: 159-172, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29846927

RESUMEN

Identification of target proteins that directly bind to bioactive small molecule is of great interest in terms of clarifying the mode of action of the small molecule as well as elucidating the biological phenomena at the molecular level. Of the experimental technologies available, T7 phage display allows comprehensive screening of small molecule-recognizing amino acid sequence from the peptide libraries displayed on the T7 phage capsid. Here, we describe the T7 phage display strategy that is combined with quartz-crystal microbalance (QCM) biosensor for affinity selection platform and bioinformatics analysis for small molecule-recognizing short peptides. This method dramatically enhances efficacy and throughput of the screening for small molecule-recognizing amino acid sequences without repeated rounds of selection. Subsequent execution of bioinformatics programs allows combinatorial and comprehensive target protein discovery of small molecules with its binding site, regardless of protein sample insolubility, instability, or inaccessibility of the fixed small molecules to internally located binding site on larger target proteins when conventional proteomics approaches are used.


Asunto(s)
Bacteriófago T7/genética , Técnicas Biosensibles , Técnicas de Visualización de Superficie Celular , Biología Computacional , Descubrimiento de Drogas , Bibliotecas de Moléculas Pequeñas , Secuencia de Aminoácidos , Biología Computacional/métodos , Descubrimiento de Drogas/métodos , Biblioteca de Péptidos , Péptidos/química , Péptidos/metabolismo , Unión Proteica , Análisis de Secuencia de ADN , Programas Informáticos
19.
Biosci Biotechnol Biochem ; 82(3): 442-448, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29447077

RESUMEN

Neoechinulin A is an indole alkaloid with several biological activities. We previously reported that this compound protects neuronal PC12 cells from cytotoxicity induced by the peroxynitrite generator 3-morpholinosydnonimine (SIN-1), but the target proteins and precise mechanism of action of neoechinulin A were unclear. Here, we employed a phage display screen to identify proteins that bind directly with neoechinulin A. Our findings identified two proteins, chromogranin B and glutaredoxin 3, as candidate target binding partners for the alkaloid. QCM analyses revealed that neoechinulin A displays high affinity for both chromogranin B and glutaredoxin 3. RNA interference-mediated depletion of chromogranin B decreased the sensitivity of PC12 cells against SIN-1. Our results suggested chromogranin B is a plausible target of neoechinulin A.


Asunto(s)
Cromogranina B/metabolismo , Glutarredoxinas/metabolismo , Alcaloides Indólicos/metabolismo , Fármacos Neuroprotectores/metabolismo , Biblioteca de Péptidos , Piperazinas/metabolismo , Animales , Cromogranina B/deficiencia , Cromogranina B/genética , Silenciador del Gen , Glutarredoxinas/deficiencia , Glutarredoxinas/genética , Alcaloides Indólicos/farmacología , Fármacos Neuroprotectores/farmacología , Células PC12 , Piperazinas/farmacología , Unión Proteica , Ratas
20.
Sci Rep ; 8(1): 2251, 2018 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-29396565

RESUMEN

The delivery of hydrophilic macromolecules runs into difficulties such as penetration of the cell membrane lipid bilayer. Our prior experiment demonstrated that capsaicin induces the reversible opening of tight junctions (TJs) and enhances the delivery of hydrophilic macromolecules through a paracellular route. Herein, we screened paracellular permeability enhancers other than capsaicin. As TJ opening by capsaicin is associated with Ca2+ influx, we first screened the compounds that induce Ca2+ influx in layered MDCK II cells, and then we determined the compounds' abilities to open TJs. Our results identified several natural compounds with α,ß-unsaturated moiety. A structure-activity relationship (SAR) analysis and the results of pretreatment with reducing reagent DTT suggested the importance of α,ß-unsaturated moiety. We also examined the underlying mechanisms, and our findings suggest that the actin reorganization seen in capsaicin treatment is important for the reversibility of TJ opening. Furthermore, our analyses revealed that TRPA1 is involved in the Ca2+ influx and TJ permeability increase not only by an α,ß-unsaturated compound but also by capsaicin. Our results indicate that the α,ß-unsaturated moiety can be a potent pharmacophore for TJ opening.


Asunto(s)
Capsaicina/metabolismo , Permeabilidad/efectos de los fármacos , Canal Catiónico TRPA1/metabolismo , Uniones Estrechas/efectos de los fármacos , Animales , Transporte Biológico/efectos de los fármacos , Calcio/metabolismo , Perros , Células de Riñón Canino Madin Darby
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA