Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Base de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Future Microbiol ; 19(12): 1055-1070, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-38913747

RESUMEN

Aim: Animal models of fatal pneumonia caused by Streptococcus pneumoniae (Spn) have not been reliably generated using many strains of less virulent serotypes.Materials & methods: Pulmonary infection of a less virulent Spn serotype1 strain in the immunocompetent mice was established via the intratracheal aerosolization (ITA) route. The survival, local and systemic bacterial spread, pathological changes and inflammatory responses of this model were compared with those of mice challenged via the intratracheal instillation, intranasal instillation and intraperitoneal injection routes.Results: ITA and intratracheal instillation both induced fatal pneumonia; however, ITA resulted in better lung bacterial deposition and distribution, pathological homogeneity and delivery efficiency.Conclusion: ITA is an optimal route for developing animal models of severe pulmonary infections.


What is this article about? Streptococcus pneumoniae (Spn), a type of bacteria, can cause serious illness and death in otherwise healthy people. One way that we study pneumonia is using animals. However, pneumonia in animals infected with Spn in the laboratory does not mimic that in humans very well. To study this illness, we need a new way to set up a proper animal model.What were the results? This study set up a method called intratracheal aerosolization (ITA). In ITA, bacteria can form small droplets called aerosols and reach the deepest parts of a mouse's lung. ITA can cause deadly illness in mice infected with Spn, even if the mice are healthy.What do the results of the study mean? The ITA method could be a useful tool to set up animal models of serious pneumonia with less virulent bacteria.


Asunto(s)
Aerosoles , Modelos Animales de Enfermedad , Pulmón , Neumonía Neumocócica , Streptococcus pneumoniae , Animales , Streptococcus pneumoniae/patogenicidad , Ratones , Neumonía Neumocócica/microbiología , Neumonía Neumocócica/mortalidad , Neumonía Neumocócica/patología , Neumonía Neumocócica/inmunología , Pulmón/microbiología , Pulmón/patología , Virulencia , Femenino
2.
Emerg Microbes Infect ; 12(1): 2191741, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36920800

RESUMEN

Pulmonary anthrax is the most fatal clinical form of anthrax and currently available injectable vaccines do not provide adequate protection against it. Hence, next-generation vaccines that effectively induce immunity against pulmonary anthrax are urgently needed. In the present study, we prepared an attenuated and low protease activity Bacillus anthracis strain A16R-5.1 by deleting five of its extracellular protease activity-associated genes and its lef gene through the CRISPR-Cas9 genome editing system. This mutant strain was then used to formulate a lethal toxin (LeTx)-free culture supernatant extract (CSE) anthrax vaccine, of which half was protective antigen (PA). We generated liquid, powder, and powder reconstituted formulations that could be delivered by aerosolized intratracheal inoculation. All of them induced strong humoral, cellular, and mucosal immune responses. The vaccines also produced LeTx neutralizing antibodies and conferred full protection against the lethal aerosol challenges of B. anthracis Pasteur II spores in mice. Compared to the recombinant PA vaccine, the CSE anthrax vaccine with equal PA content provided superior immunoprotection against pulmonary anthrax. The preceding results suggest that the CSE anthrax vaccine developed herein is suitable and scalable for use in inhalational immunization against pulmonary anthrax.


Asunto(s)
Vacunas contra el Carbunco , Carbunco , Bacillus anthracis , Ratones , Animales , Carbunco/prevención & control , Vacunas contra el Carbunco/genética , Antígenos Bacterianos/genética , Polvos , Bacillus anthracis/genética , Vacunas Sintéticas , Péptido Hidrolasas , Anticuerpos Antibacterianos
3.
Biomolecules ; 13(2)2023 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-36830716

RESUMEN

USA300, a dominant clone of community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA), is circulating globally and can cause necrotizing pneumonia with high morbidity and mortality. To further reveal the host anti-MRSA infection immune response, we established a mouse model of acute primary MRSA pneumonia challenged with aerosols of the USA300 clone. A time-course transcriptome analysis of the lungs collected at 0, 12, 24, 48 and 96 h post-infection (hpi) was conducted using RNA sequencing (RNA-seq) and multiple bioinformatic analysis methods. The change trend of histopathology and five innate immune cell (neutrophils, mononuclear cells, eosinophils, macrophages, DC cells) proportions in the lungs after infection was also examined. We observed a distinct acute pulmonary recovery process. A rapid initiation period of inflammation was present at 12 hpi, during which the IL-17 pathway dominantly mediated inflammation and immune defense. The main stages of host inflammatory response occurred at 24 and 48 hpi, and the regulation of interferon activation and macrophage polarization played an important role in the control of inflammatory balance at this stage. At 96 hpi, cellular proliferation processes associated with host repair were observed, as well as adaptive immunity and complement system responses involving C1q molecules. More importantly, the data provide new insight into and identify potential functional genes involved in the checks and balances occurring between host anti-inflammatory and proinflammatory responses. To the best of our knowledge, this is the first study to investigate transcriptional responses throughout the inflammatory recovery process in the lungs after MRSA infection. Our study uncovers valuable research targets for key regulatory mechanisms underlying the pathogenesis of MRSA lung infections, which may help to develop novel treatment strategies for MRSA pneumonia.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Neumonía , Infecciones Estafilocócicas , Ratones , Animales , Staphylococcus aureus Resistente a Meticilina/genética , Aerosoles y Gotitas Respiratorias , Pulmón/patología , Perfilación de la Expresión Génica , Inflamación/patología , Células Clonales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA