Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Theriogenology ; 178: 85-94, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34808561

RESUMEN

Heat stress causes oxidative damage and induces excessive cell apoptosis and thus affects the development and/or even causes the death of preimplantation embryos. The effects of baicalin on the developmental competence of heat-stressed mouse embryos were investigated in this experiment. Two-cell embryos were cultured in the presence of baicalin and subjected to heat stress (42 °C for 1 h) at their blastocyst stage followed by continuous culture at 37 °C until examination. The results showed that heat stress (H group) increased reactive oxygen species (ROS) production, apoptosis and even embryo death, along with reductions in both mitochondrial activity and membrane potential (ΔΨm). Both heat stress (H group) and inhibition of the ERK1/2 signaling pathway (U group) led to significantly reduced expression levels of the genes c-fos, AP-1 and ERK2, and the phosphorylation of ERK1/2 and c-Fos, along with significantly increased c-Jun mRNA expression and phosphorylation levels. These negative effects of heat stress on the ERK1/2 signaling pathway were neutralized by baicalin treatment. To explore the signal transduction mechanism of baicalin in improving embryonic tolerance to heat stress, mitochondrial quality and apoptosis rate in the mouse blastocysts were also examined. Baicalin was found to up-regulate the expression of mtDNA and TFAM mRNA, increased mitochondria activity and ΔΨm, and improved the cellular mitochondria quality of mouse blastocysts undergoing heat stress. Moreover, baicalin decreased Bax transcript abundance in blastocyst, along with an increase in the blastocyst hatching rate, which were negatively affected by heat stress. Our findings suggest that baicalin improves the developmental capacity and quality of heat-stressed mouse embryos via a mechanism whereby mitochondrial quality is improved by activating the ERK1/2 signaling pathway and inducing anti-cellular apoptosis.


Asunto(s)
Técnicas de Cultivo de Embriones , Termotolerancia , Animales , Apoptosis , Blastocisto/metabolismo , Técnicas de Cultivo de Embriones/veterinaria , Desarrollo Embrionario , Flavonoides , Sistema de Señalización de MAP Quinasas , Ratones , Mitocondrias/metabolismo , Transducción de Señal
2.
J Therm Biol ; 82: 63-69, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31128660

RESUMEN

Heat stress has been documented to reduce reproductive performance of female animals through injury to germ cells, with few studies available in male animals. The objectives of this study were to evaluate protective effects of baicalin on testicular tissue damage of mice subjected to heat stress and its related mechanisms. In this experiment, A total of forty mice were divided into four groups, including control group (C), baicalin group (B), heat stressed group (H) and heat stress with baicalin treatment (H + B) group. Morphological changes, activities of antioxidant enzymes and apoptosis-related parameters in the mice testes tissue were monitored. The results showed that the process of spermatogenesis in mice testis was impaired and the cellular apoptosis increased due to acute heat stress at 41 °C. Interestingly, the tissue damage was alleviated with the significant (P < 0.05) increase in the activities of SOD, CAT and GSH-Px enzymes, decrease (P < 0.05) in MDA content and number of cellular apoptosis recorded in mice of H + B group compared with those in mice from H group. In addition, the Fas, FasL and P-JNK protein expressions were significantly (P < 0.05) increased; and apaf-1, caspase-3, -9 were slightly expressed in the H group, while there was no difference in Bcl-2 expression, compared with C, B and H + B groups. The above results clearly indicate that heat stress induces macroscopic/apoptotic and oxidative changes in the testicular tissue of mice; these changes are alleviated by Baicalin through increasing anti-oxidative enzyme activities and possibly through blocking Fas/FasL pathway.


Asunto(s)
Flavonoides/farmacología , Respuesta al Choque Térmico/efectos de los fármacos , Sustancias Protectoras/farmacología , Testículo/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Proteína Ligando Fas/metabolismo , Masculino , Ratones , Transducción de Señal/efectos de los fármacos , Testículo/citología , Testículo/metabolismo , Testículo/ultraestructura , Receptor fas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA