Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
Chem Soc Rev ; 53(18): 9344-9377, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39162094

RESUMEN

Electrochemical CO2 reduction (ECR) holds great potential to alleviate the greenhouse effect and our dependence on fossil fuels by integrating renewable energy for the electrosynthesis of high-value fuels from CO2. However, the high thermodynamic energy barrier, sluggish reaction kinetics, inadequate CO2 conversion rate, poor selectivity for the target product, and rapid electrocatalyst degradation severely limit its further industrial-scale application. Although numerous strategies have been proposed to enhance ECR performances from various perspectives, scattered studies fail to comprehensively elucidate the underlying effect-performance relationships toward ECR. Thus, this review presents a comparative summary and a deep discussion with respect to the effects strongly-correlated with ECR, including intrinsic effects of materials caused by various sizes, shapes, compositions, defects, interfaces, and ligands; structure-induced effects derived from diverse confinements, strains, and fields; electrolyte effects introduced by different solutes, solvents, cations, and anions; and environment effects induced by distinct ionomers, pressures, temperatures, gas impurities, and flow rates, with an emphasis on elaborating how these effects shape ECR electrocatalytic activities and selectivity and the underlying mechanisms. In addition, the challenges and prospects behind different effects resulting from various factors are suggested to inspire more attention towards high-throughput theoretical calculations and in situ/operando techniques to unlock the essence of enhanced ECR performance and realize its ultimate application.

2.
ACS Appl Mater Interfaces ; 16(31): 41669-41676, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39044405

RESUMEN

Smart metal-metal oxide heterointerface construction holds promising potentials to endow an efficient electron redistribution for electrochemical CO2 reduction reaction (CO2RR). However, inhibited by the intrinsic linear-scaling relationship, the binding energies of competitive intermediates will simultaneously change due to the shifts of electronic energy level, making it difficult to exclusively tailor the binding energies to target intermediates and the final CO2RR performance. Nonetheless, creating specific adsorption sites selective for target intermediates probably breaks the linear-scaling relationship. To verify it, Ag nanoclusters were anchored onto oxygen vacancy-rich CeO2 nanorods (Ag/OV-CeO2) for CO2RR, and it was found that the oxygen vacancy-driven heterointerface could effectively promote CO2RR to CO across the entire potential window, where a maximum CO Faraday efficiency (FE) of 96.3% at -0.9 V and an impressively high CO FE of over 62.3% were achieved at a low overpotential of 390 mV within a flow cell. The experimental and computational results collectively suggested that the oxygen vacancy-driven heterointerfacial charge spillover conferred an optimal electronic structure of Ag and introduced additional adsorption sites exclusively recognizable for *COOH, which, beyond the linear-scaling relationship, enhanced the binding energy to *COOH without hindering *CO desorption, thus resulting in the efficient CO2RR to CO.

3.
Small Methods ; : e2301778, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38741551

RESUMEN

With the rapid development and maturity of electrochemical CO2 conversion involving cathodic CO2 reduction reaction (CO2RR) and anodic oxygen evolution reaction (OER), conventional ex situ characterizations gradually fall behind in detecting real-time products distribution, tracking intermediates, and monitoring structural evolution, etc. Nevertheless, advanced in situ techniques, with intriguing merits like good reproducibility, facile operability, high sensitivity, and short response time, can realize in situ detection and recording of dynamic data, and observe materials structural evolution in real time. As an emerging visual technique, scanning electrochemical microscope (SECM) presents local electrochemical signals on various materials surface through capturing micro-current caused by reactants oxidation and reduction. Importantly, SECM holds particular potentials in visualizing reactive intermediates at active sites and obtaining instantaneous morphology evolution images to reveal the intrinsic reactivity of active sites. Therefore, this review focuses on SECM fundamentals and its specific applications toward CO2RR and OER, mainly including electrochemical behavior observation on local regions of various materials, target products and onset potentials identification in real-time, reaction pathways clarification, reaction kinetics exploration under steady-state conditions, electroactive materials screening and multi-techniques coupling for a joint utilization. This review undoubtedly provides a leading guidance to extend various SECM applications to other energy-related fields.

4.
ACS Nano ; 17(9): 8705-8716, 2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37068128

RESUMEN

Substrate-supported catalysts with atomically dispersed metal centers are promising for driving the carbon dioxide reduction reaction (CO2RR) to produce value-added chemicals; however, regulating the size of exposed catalysts and optimizing their coordination chemistry remain challenging. In this study, we have devised a simple and versatile high-energy pulsed laser method for the enrichment of a Bi "single atom" (SA) with a controlled first coordination sphere on a time scale of nanoseconds. We identify the mechanistic bifurcation routes over a Bi SA that selectively produce either formate or syngas when bound to C or N atoms, respectively. In particular, C-stabilized Bi (Bi-C) exhibits a maximum formate partial current density of -29.3 mA cm-2 alongside a TOF value of 2.64 s-1 at -1.05 V vs RHE, representing one of the best SA-based candidates for CO2-to-formate conversion. Our results demonstrate that the switchable selectivity arises from the different coupling states and metal-support interactions between the central Bi atom and adjacent atoms, which modify the hybridizations between the Bi center and *OCHO/*COOH intermediates, alter the energy barriers of the rate-determining steps, and ultimately trigger the branched reaction pathways after CO2 adsorption. This work demonstrates a practical and universal ultrafast laser approach to a wide range of metal-substrate materials for tailoring the fine structures and catalytic properties of the supported catalysts and provides atomic-level insights into the mechanisms of the CO2RR on ligand-modified Bi SAs, with potential applications in various fields.

5.
Sci Adv ; 8(16): eabm6541, 2022 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-35452279

RESUMEN

Nanoalloys, especially high-entropy nanoalloys (HENAs) that contain equal stoichiometric metallic elements in each nanoparticle, are widely used in vast applications. Currently, the synthesis of HENAs is challenged by slow reaction kinetics that leads to phase segregation, sophisticated pretreatment of precursors, and inert conditions that preclude scalable fabrication of HENAs. Here, we report direct conversion of metal salts to ultrafine HENAs on carbonaceous support by nanosecond pulsed laser under atmospheric conditions. Because of the unique laser-induced thermionic emission and etch on carbon, the reduced metal elements were gathered to ultrafine HENAs and stabilized by defective carbon support. This scalable, facile, and low-cost method overcomes the immiscible issue and can produce various HENAs uniformly with a size of 1 to 3 nanometers and metal elements up to 11 with productivity up to 7 grams per hour. One of the senary HENAs exhibited excellent catalytic performance in oxygen reduction reaction, manifesting great potential in practical applications.

6.
Small ; 18(1): e2105682, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34786849

RESUMEN

Electrochemical CO2 reduction reaction (CO2 RR) is a promising approach to convert CO2 to carbon-neutral fuels using external electric powers. Here, the Bi2 S3 -Bi2 O3 nanosheets possessing substantial interface being exposed between the connection of Bi2 S3 and Bi2 O3 are prepared and subsequently demonstrate to improve CO2 RR performance. The electrocatalyst shows formate Faradaic efficiency (FE) of over 90% in a wide potential window. A high partial current density of about 200 mA cm-2 at -1.1 V and an ultralow onset potential with formate FE of 90% are achieved in a flow cell. The excellent electrocatalytic activity is attributed to the fast-interfacial charge transfer induced by the electronic interaction at the interface, the increased number of active sites, and the improved CO2 adsorption ability. These collectively contribute to the faster reaction kinetics and improved selectivity and consequently, guarantee the superb CO2 RR performance. This study provides an appealing strategy for the rational design of electrocatalysts to enhance catalytic performance by improving the charge transfer ability through constructing a functional heterostructure, which enables interface engineering toward more efficient CO2 RR.

7.
Nanomicro Lett ; 14(1): 38, 2021 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-34921332

RESUMEN

Electrochemical reduction of CO2 to formate is economically attractive but improving the reaction selectivity and activity remains challenging. Herein, we introduce boron (B) atoms to modify the local electronic structure of bismuth with positive valence sites for boosting conversion of CO2 into formate with high activity and selectivity in a wide potential window. By combining experimental and computational investigations, our study indicates that B dopant differentiates the proton participations of rate-determining steps in CO2 reduction and in the competing hydrogen evolution. By comparing the experimental observations with the density functional theory, the dominant mechanistic pathway of B promoted formate generation and the B concentration modulated effects on the catalytic property of Bi are unravelled. This comprehensive study offers deep mechanistic insights into the reaction pathway at an atomic and molecular level and provides an effective strategy for the rational design of highly active and selective electrocatalysts for efficient CO2 conversion.

8.
ACS Nano ; 15(11): 17757-17768, 2021 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-34672527

RESUMEN

The ever-increasing concern for adverse climate changes has propelled worldwide research on the reduction of CO2 emission. In this regard, CO2 electroreduction (CER) to formate is one of the promising approaches to converting CO2 to a useful product. However, to achieve a high production rate of formate, the existing catalysts for CER fall short of expectation in maintaining the high formate selectivity and activity over a wide potential window. Through this study, we report that Bi2O3 nanosheets (NSs) grown on carbon nanofiber (CNF) with inherent hydrophobicity achieve a peak formate current density of 102.1 mA cm-2 and high formate Faradaic efficiency of >93% over a very wide potential window of 1000 mV. To the best of our knowledge, this outperforms all the relevant achievements reported so far. In addition, the Bi2O3 NSs on CNF demonstrate a good antiflooding capability when operating in a flow cell system and can deliver a current density of 300 mA cm-2. Molecular dynamics simulations indicate that the hydrophobic carbon surface can repel water molecules to form a robust solid-liquid-gas triple-phase boundary and a concentrated CO2 layer; both can boost CER activity with the local high concentration of CO2 and through inhibiting the hydrogen evolution reaction (HER) by reducing proton contacts. This water-repelling effect also increases the local pH at the catalyst surface, thus inhibiting HER further. More significantly, the concept and methodology of this hydrophobic engineering could be broadly applicable to other formate-producing materials from CER.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA